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Adam: Adaptive Moment Estimation 

2015
Birth of Adam
Claim: converges

2022
“Adam converges”

2018
“Adam diverges”

Kingma and Ba. Adam: A method for 
stochastic optimization. ICLR 2015.

Cited by > 150k times

Reddi, Kale, & Kumar, On the convergence 
of Adam and beyond. ICLR 2018.

ICLR 2018 best paper

Zhang, Chen, Shi, Sun, & Luo, Adam 
can converge without any modification 
on update rules. NeurIPS 2022

Total page: 55 2



What to expect from this talk? 

• Question: Adam converges or not? How to tune it? 

• For practitioners: 
Ø Story of Adam: what it is, popularity, convergence
Ø how to tune hyperparameters of Adam

• For optimization theorists:
ØDifferent meanings of “algorithm convergence”
ØDivergence-convergence phase transition
ØA method to analyze stochastic non-linear iterations
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Empirical Guidance: Hyperparameter Tuning

• We prove that Adam can converge without ANY modification.

• Hyperparameter tunning suggestions:
• First, tune up 𝛽!. 

Then, try different 𝛽" with 𝛽" < 𝛽!
• Detailed suggestions: end of talk
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Tip for professors:
If DL experiments failed, ask students  one more question:
have you tuned Adam hyperparameters?

(many think Adam is tuning-free)



Contents

1. A Story of Adam

2. Main Results

3. Proof Ideas

4. Experiments and Summary
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Pre-ML Stage:
Development of 1st and 2nd order methods

Story of Adam: More Complete Version

Stage 1: ML Development Stage: Adagrad, RMSProp, Adam

1840-2010

Emp-Stage 2:
Popularity in AI

2011-2015

2015-2022

2022-? Still dominating in ChatGPT
New algorithm?

Theo-Stage 2: Adam does not converge
variants: AMSGrad, Adashift, Adabound…

Theo-Stage 3: Adam can converge

2018

2022



Pre-ML Stage: Classical Algorithms
(1840-2010)
• Central issue in (unconstrained) nonlinear optimization:

information v.s. computation
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1st order methods: gradient descent (1847, Cauchy), 
Accelerated 1st order method (Nesterov, 1983)

Second order methods: Newton method

Quasi-2nd order methods:
BFGS (1970s), LBFGS (1980s), BB (1980s)



Stage 1: Development of Adam (2011-2015)
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2011: Adagrad, JMLR
Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online learning and 
stochastic optimization." Journal of machine learning research 12.7 (2011).

2012: RMSProp, Lecture notes by Hinton

2015: Adam, ICLR
Kingma,Ba. Adam: A method for stochastic optimization. ICLR 2015.



• Consider  min
#

𝑓(𝑥) ≔ ∑$%"& 𝑓$(𝑥) .

𝑛: number of samples (or mini-batches of samples)
𝑥: trainable parameters

• In the 𝑘-th iteration: Randomly sample 𝜏' from {1,2, … , 𝑛}

1st order momentum

Iterate update

Let us start with SGD…

SGD (Stochastic gradient descent): 𝑥!"# = 𝑥! − 𝜂!𝛻f $! x%
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SGD with momentum (SGDM):
𝑚! = 1 − 𝛽# 𝛻f $! x% + 𝛽#𝑚!&#

𝑥!"# = 𝑥! − 𝜂!𝑚!



Adagrad
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2nd order momentum

Iterate update

Adagrad outperforms SGD significantly on language tasks
Becomes the default choice among NLPers, for ~5 years

Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online 
learning and stochastic optimization." Journal of machine learning research 12.7 (2011).

min
!

𝑓(𝑥) ≔ ∑"#$% 𝑓"(𝑥) .

𝑛: number of samples (or mini-batches of samples)
𝑥: trainable parameters

In the 𝑘-th iteration: Randomly sample 𝜏& from {1,2, … , 𝑛}

Adagrad (Duchi et al.’11):
• 𝑣' =

':"
' v;:" +

"
'𝛻f <! x; ∘ 𝛻f <! x;

• 𝑥'=" = 𝑥' − 𝜂'
>? "! @!

A#



RMSProp
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2nd order momentum

Iterate update

AdaGrad: it treats all samples equally
RMSprop: use EMA (exponential moving average) to define 𝑣'

RMSProp (Hinton	’12):

• 𝑣' = 1 − 𝛽! 𝛻f <! x' ∘ 𝛻f <! 𝑥' + 𝛽!𝑣':"
• 𝑥'=" = 𝑥' − 𝜂'

>? "! @!
A#

Proposed in the lecture notes by Geoffrey Hinton
PyTorch default Choice: 𝛽! = 0.99



• min
!

𝑓(𝑥) ≔ ∑"#$% 𝑓"(𝑥) . In the 𝑘-th iteration: Randomly sample 𝜏& from {1,2, … , 𝑛}

• 𝛽$: Controls the 1st-order momentum 𝑚&. Default setting: 𝛽$ = 0.9
• 𝛽': Controls the 2nd-order momentum 𝑣&. Default setting: 𝛽' = 0.999

Adam

• Adam	(Kingma and	Ba’15):
• 𝑚' = 1 − 𝛽" 𝛻f <! x; + 𝛽"𝑚':"
• 𝑣' = 1 − 𝛽! 𝛻f <! x' ∘ 𝛻f <! 𝑥' + 𝛽!𝑣':"

• 𝑥'=" = 𝑥' − 𝜂'
":B$#

":B%#
C#
A#
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1st order momentum

Iterate update

2nd order momentum



Emp-Stage 2: Popularity in AI

• Adam becomes the most popular algorithms in deep learning 
(DL). (>150,000 citations, by August 2023)

• Default in LLM (large language models)
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• Empirical fact (sad?): Adam seems to be the only choice for LLMs like ChatGPT
--Recent new algorithms (Sophie, Lion, etc.)

cannot beat Adam on 100 billion-parameter models.



Advantages of Adam

GPT (from [Wang et al.22])BERT (from [Zhang et al.19])

SGDM

Adam significantly outperforms SGDM in training large-AI models
Total page: 55 15



Theo-Stage 2: “Adam does not converge”
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Reddi et al.18 (ICLR Best paper): 
For any 𝛽", 𝛽! s.t. 𝛽" < 𝛽! , there exists a problem such that Adam 
diverges



Debate on“convergence issue”
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Reader: “My claim is that…for any problem, 
a properly tuned-Adam will converge at least 
as well as SGD”

Authors: “Our paper shows that the algorithm 
defined in the Adam paper has convergence 
issues.”

ICLR’18 paper authors reply:

ICLR’18 paper reader’s comment:



To Overcome Divergence, …

• Modify Adam
• AMSGrad, AdaFom [Reddi et al.’18, Chen et al.’18]: keep 𝑣' ≥ 𝑣':"

ØSlow convergence [Zhou et al.’ 18]

• AdaBound [Luo et al.’ 19]: Impose constraint: 𝑣' ∈ [𝐶D, 𝐶E]
ØNeed to tune two extra hyperparameters

However, vanilla Adam works well for most practical applications!

19
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Comparison: Adam vs its variants

• *Disclaimer: contribution is not proportional to citation. 
But citation might reflect the popularity among practitioners.
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However, Adam remains overwhelmingly popular

• The attention Adam received is astonishing!
• Partially because many variants  bring new issues (e.g., slow) 
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Divergence theory does not match practice

Most deep learning tasks
(e.g. RL, NLP, CV, GAN, etc.):
𝛽$ = 0.9, 𝛽' = 0.999

Conditional GAN, DCGAN, etc: 
𝛽$ = 0.5, 𝛽' = 0.999

Super-large language models (e.g. GPT-3)
𝛽$ = 0.9, 𝛽' = 0.95

First-order GAN, MSG-GAN:
𝛽$ = 0, 𝛽' = 0.999
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Observation: the reported 𝛽", 𝛽! actually satisfy divergence condition 𝛽" < 𝛽! !

Is there any gap between theory and practice? 
Why is the divergence not observed?



Why is divergence not observed? 

• Reddi et al. 18 consider min
!
𝑓(𝑥) ≔ ∑"#$% 𝑓"(𝑥)

• An important (but often ignored) feature: Reddi et al. fix 𝛽", 𝛽! before 
picking the problem (change 𝑛 according to 𝛽", 𝛽! )

• While in practice, parameters are often problem-dependent
(e.g. tuning lr for GD)

• Conjecture: Adam might converge for fixed problem (or fixed 𝒏)
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Proof (Reddi et al. 18): 
For any fixed 𝛽", 𝛽! s.t. 𝛽" < 𝛽! , we can find an 𝑛 to 
construct the divergence example 𝑓(𝑥)



A simple illustration

24

Question: Does Adam converge for fixed problem class (fixed 𝑛)?

For fixed 𝛽$, 𝛽', can find 𝒏𝟏 to construct counter-example

But Adam with this 𝛽$, 𝛽' converges on functions with other 𝒏𝟐
Problem class with 𝒏𝟐

Problem class with 𝒏𝟏
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Contents

1. Story of Adam

2. Main Results

3. Proof Ideas

4. Experiments and Summary
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Assumptions
• Consider min

!
𝑓(𝑥) ≔ ∑"#$% 𝑓"(𝑥)

• A1 (L-smooth): assume 𝛻𝑓"(𝑥) are L-Lipschitz continuous

• A2 (Affine Variance): $
%
∑"#$% || 𝛻𝑓" x − $

*
∑"#$% 𝛻𝑓" 𝑥 ||'' ≤ 𝐷$|| 𝛻𝑓 x ||'' + 𝐷+

• Remark: A2 is quite general:
Ø When 𝐷$ = 0, A2 becomes bounded variance, commonly used in SGD analysis
Ø When 𝐷+ = 0, A2 becomes ``Strong Growth Condition (SGC)” [Vaswani et al., 19]

-- Intuition: When || 𝛻𝑓(x)||=0  ⟹ we have || 𝛻𝑓"(x)||=0. 
-- 𝑫𝟎 = 𝟎 holds for overparametrized networks (Vaswani et al.19) 

• To our knowledge, A1+ A2 are the mildest assumptions for stochastic opt 
algorithms (we do not use bounded gradient assumption)
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Convergence results for large 𝜷𝟐
• Theorem 1: Consider the previous setting.  

When 𝛽' ≥ 1 − 𝑂 $-.!"

%#.%
and 𝛽$ < 𝛽' < 1, Adam with stepsize 𝜂& =

$
√&

converges to the 
neighborhood of stationary points: 

min
&∈[$,3]

𝔼|| ∇𝑓 𝑥& ||'' = 𝑂
log 𝑇

1 − 𝛽' ' 𝑇
+ 1 − 𝛽' 𝐷+ .

Total page: 55 27

We identify a safe region! (UNKNOWN BEFORE!)

RK: Our result does not support 𝛽' = 1, so does not cover SGDM 

RK: When 𝐷+ = 0 (e.g., for overparameterized models): Adam converges to stationary points



Remark: Convergence to neighborhood

• When 𝐷G > 0: converges to a neighborhood of stationary points with 
size O( 1 − 𝛽! 𝐷G).  (a.k.a. ``ambiguity zone”).

• This is common for
--constant-step SGD [Yan et al., 2018; Yu et al., 2019]

--diminishing-lr adaptive gradient methods [Zaheer et al., 2018; Shi et al., 2020]:

𝑥'=" = 𝑥' −
𝜂'
𝑣'
𝑚'

Intuition: Although 𝜂' is diminishing, H#
A#

may not decrease. 
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Remark: Convergence to neighborhood.
Left: A toy example with 𝐷G > 0 Right: A toy example with 𝐷G = 0

Setting: Adam & SGD with lr 𝜂' =
"
√'
Total page: 55 29



Discussion: different meanings of convergence

• Pre-ML era: 𝑛 usually =1

Meaning of Convergence: 
--Error term decays to 0 under certain rate (e.g., ∇𝑓 𝑥& ' = 𝑂( (

√&
) )

• Post-ML era: 𝑛 usually >1, no access to the full gradient

Meaning of convergence: only to the neighborhood of solution sets
--For SGD: ∇𝑓 𝑥& ' = 𝑂 (

&
+ 𝑂 𝜂&𝐷*

--For Adam: ∇𝑓 𝑥& ' = 𝑂 (
&
+ 𝑂 1 − 𝛽' 𝐷*

• The error floor might be acceptable because:
-- 𝐷! = 0 for over-parameterized DNN (Vaswani et al.19)
-- 𝛽" ~0.999 in practice, so the error is small
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min
!

𝑓(𝑥) ≔)
"#$

%

𝑓"(𝑥)

Error floor!



How does Adam behave in the rest of the region?

• When 𝛽3 is large: we have shown a positive result. 

• When 𝛽3 is small: we will show that Adam can still diverge! (even if the 
problem class is fixed)
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Divergence can happen when 𝜷𝟐 is small 
• Thm 2: For any fixed n, there exists a function 𝑓(𝑥) satisfying A1 and A2, s.t.

when (𝛽*, 𝛽+) are chosen in the orange region (size depends on 𝑛), s.t.
Adam’s iterates and function values diverge to infinity

Total page: 55 32

• The region is precisely drawn (plotted by solving some analytic conditions)
• region enlarges with 𝑛



Implication to practitioners

• Case study: Bob is using Adam to train NNs.  However, Adam with default 
hyperparameter fails in his tasks. 

• Bob heard there is a well-known result that Adam can diverge.

• So he wonders: shall I keep tuning hyperparameter to make it work?

• Or shall I just give up and switch to other algorithms like AdaBound (which has 2 
extra hyperparameters)?

Our suggestions:
1. Adam is still a theoretically justified algorithm. Please use it confidently! 
2. Suggestions for hyperparameter tunning: 

In one sentence: First, tune up 𝛽". Then, try different 𝛽# with 𝛽# < 𝛽"
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𝛽! = 1

𝛽! = 0

Adam: 𝒙𝒕"𝟏 = 𝒙𝒕 − 𝜼𝒕
𝒎𝒕
√𝒗𝒕
E(-)!

√+!
)

−𝛻𝑓(𝑥,)

E(-)!
√+!
) −𝛻𝑓(𝑥,)

E(-)!
√+!
)

−𝛻𝑓(𝑥,)

E(-)!
√+!
)

−𝛻𝑓(𝑥,)

Converge

Diverge

1

0

Intuition behind convergence and divergence

Total page: 55 35



Proof Ideas for Convergence Analysis: An Overview

36

Want to show: 𝔼 𝛻𝑓 𝑥& ,
5&
6&

= 𝔼 𝛻𝑓 𝑥& ,
$-.! 78'& !& 9.!5&(!

$-.) 78'& !& ∘78'& !& 9.)6&(!
>	0	
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Goal: want to prove: 𝔼⟨∇𝑓 𝑥& ,
)"
+"
⟩ > 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡∗ 𝔼⟨∇𝑓 𝑥& , ∇𝑓(𝑥&)⟩ > 0

Major challenge 1: 𝑣& appears in the denominator, may blow up.

Major challenge 2: momentum 𝑚& contains history information.

Major challenge 3: both 𝑚& and 𝑣& are random

Solutions: 

Step 1:𝔼 ∇𝑓 𝑥& ,
)"
+"

= 𝔼 ∇. !"
+"

, 𝑚& ≈ 𝔼 ∇. !"
+"

, ∇𝑓 𝑥& (80% of the proof)
Step 1-1: prove 𝔼(𝑚&) ≈ 𝔼(𝛻𝑓 𝑥& ) (to get idea and intuition)
Step 1-2: prove 𝔼⟨/. !"

√+"
, 𝑚& ⟩≈ 𝔼 ⟨/. !"

√+"
, 𝛻𝑓 𝑥& ⟩ (main part of Step 1)

Step 2: 𝔼 ⟨𝛻𝑓 𝑥& ,
/. !"
√+"

⟩ ≥ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡∗ 𝔼 ∇𝑓 𝑥& , ∇𝑓 𝑥& > 0 (20% of the proof)



Step 1.1:Want to show: 𝔼 𝛻𝑓 𝑥A −𝑚A ≈ 0

• Want To Show: 𝔼 𝛻𝑓 𝑥& −𝑚& ≈ 0
• What is the math problem here? Estimate difference of two sum’s.

• Understanding Step (i): Full-Batch case with n = 1
∇𝑓 𝑥& = 1 − 𝛽$ ( 𝛻𝑓 𝑥& + 𝛽$𝛻𝑓 𝑥& + …𝛽$&-$𝛻𝑓 𝑥& )
𝑚& = weighted average of past gradients = 1 − 𝛽$ ( 𝛻𝑓 𝑥& + 𝛽$𝛻𝑓 𝑥&-$ +

…𝛽$&-$𝛻𝑓 𝑥$ )

• Math Problem: Comparing weighted average over history v.g. current gradient
• Traditional Solution: 

analyze the spectrum of asymmetric update matrix (linear-algebra perspective) 
& construct potential function  (optimization perspective)
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• Want To Show: 𝔼 𝛻𝑓 𝑥& −𝑚& ≈ 0
• What is the math problem here? Estimate difference of two sum’s

• Understanding Step (ii): Stochastic case n =2

• More precisely: need to compare the following difference per epoch: 

• 𝔼 𝛻𝑓 𝑥&,* − (𝑚&,* +𝑚&,() = 𝔼 𝑔* 𝑥&,* + 𝑔((𝑥&,*) − (𝑚&,* +𝑚&,() ≈ 0

𝑚*,, = (1 − 𝛽-)( 𝑔.,, 𝑥.,, + 𝛽-𝑔./-,- 𝑥./-,- + 𝛽-0𝑔./-,, 𝑥./-,, …𝛽-
0 ./- /-𝑔-,- 𝑥-,- + 𝛽-

0 ./- 𝑔-,, 𝑥-,, )

𝑚.,-= (1 − 𝛽-)( 𝑔.,- 𝑥.,- + 𝛽-𝑔.,, 𝑥.,, + 𝛽-0𝑔./-,- 𝑥./-,- …𝛽-
0 ./- 𝑔-,- 𝑥-,- + 𝛽-

0 ./- 1-𝑔-,, 𝑥-,, )

• Math problem: comparison of two  “co-”growing exponentially-averaged sum’s

• Our idea: Find certain intrinsic properties of these sum’s under random permutation
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Step 1.1:Want to show: 𝔼 𝛻𝑓 𝑥A −𝑚A ≈ 0



Step 1.1: 𝔼 𝛻𝑓 𝑥! −𝑚! ≈ 0, An overview

• Want To Show: 𝔼 𝛻𝑓 𝑥& −𝑚& ≈ 0
• Solution: construct a simplified system by assuming 𝒙 fixed

• Color-ball of the 1st kind: consider a box contains two balls labeled 𝑐+ and 𝑐$. 
In each round (epoch), we randomly sample balls from the box without replacement, 
then we put them both back. 
We denote the 1st sampled label in the k-th epoch as 𝑎& and the 2nd sampled one as 𝑏&.

• We define the following quantities: (These mimic momentum, but with fixed 𝑥) 

Total page: 55 39(Notation: 𝑚",& denotes the partial-sum of 𝑚" in the 𝑘-th epoch) 



• Want To Show: 𝔼 𝛻𝑓 𝑥& −𝑚& ≈ 0
• Step 1-1 a): construct a simplified system by assuming 𝒙 fixed

• Color-ball of the 1st kind:  We further define the following quantities:  (These mimic 
gradient)
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Key finding:
No low-order terms!

Due to random permutation.

Step 1.1: 𝔼 𝛻𝑓 𝑥! −𝑚! ≈ 0, An overview



Total page: 55 41

Observe repeated cancelation! We observe that only the highest order term remains in the calculation!
Repeat this process until k=1.  We complete the proof of Lemma A.1

Step 1.1: 𝔼 𝛻𝑓 𝑥! −𝑚! ≈ 0, An overview

Step 2: We move one step further to calculate
𝔼&1$𝔼& ∑"(𝑚",& − 𝑓",& + ∑"(𝑚",&1$ − 𝑓",&1$ ]

Step 1: Take conditional expectation up to k-th epoch, calculate the partial sum 𝔼&[∑"(𝑚",& − 𝑓",&) ]



• What we did so far: Step 1-1 (a): assume 𝑥 fixed, find certain property

• Continue Step 1-1 (b): consider 𝑥 changing

Step 1.1: 𝔼 𝛻𝑓 𝑥! −𝑚! ≈ 0, continued

𝔼 𝛻𝑓 𝑥A −𝑚A
(1) (2) (3)

𝔼 𝛻𝑓 𝑥A −𝑚A with “fixed x”
Lemma A.1

𝑂(𝛽2&)

*: (1) Bounded Update Rule of Adam  (2) diminishing stepsize (3) Lipschitz condition.

Combined we have |𝑔(𝑥&) − 𝑔(𝑥&1$)| = 𝑂(1/√𝑘)

(1) (2) (3) can only be applied to Adam, not SGD

0
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Step 1.2: 𝔼⟨∇#:
√%:

, 𝑚& − ∇𝑓&⟩ ≈ 0, an overview

• Recall our goal: 𝔼⟨∇𝑓A,
N#
O#
⟩ > 0

• Simple decomposition: 𝔼⟨∇𝑓A,
N#
O#
⟩ = 𝔼 ∇𝑓A,

∇P#
O#

+ 𝔼 ∇𝑓A,
∇P#
O#
− N#

O#

• Recall In Step 1-1, we have shown: 𝔼 𝛻𝑓 𝑥A −𝑚A ≈ 0

• Now In Step 1-2, We will show:  𝔼 ∇𝑓A,
Q#
O#
− N#

O#
= 𝔼 ∇P#

R!
, gS −mS ≈ 0

• Idea in Step 1-2: 1) control the movement of ∇P#R!
2) Extend the proof in Step 1-1   
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Greater than 0 Still unclear



Step 1.2: 𝔼⟨∇#:
√%:

, 𝑚& − ∇𝑓&⟩ ≈ 0, an overview

• Want to show:   𝔼⟨∇8&
√6&

, 𝑚& − ∇𝑓&⟩ ≈ 0 when 𝛽' is large

• Step I: Show that || ∇8&
√6&

− ∇8&(!
6&(!

|| = 𝑂 ( $
√&
) when 𝛽' is large (requires several technical 

lemmas, omitted here)

• Step II: we construct another color-ball model

• Color-ball of the 2nd kind: Consider the same setting as the previous color ball. We further 
introduce a new seq of r.v. {𝑟<} s.t. 𝑟< is fixed when fixing the history up to j-th round and: 
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Now we define the following quantities: 



• Step II: we construct another color-ball model

• Color-ball of the 2nd kind:
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Now we define the following quantities: 

Step 1.2: 𝔼⟨∇#:
√%:

, 𝑚& − ∇𝑓&⟩ ≈ 0, an overview

Same as in Step 1-1

Controllable  error



• We introduce 4 steps to prove Lemma A.2: 

• Step 1: Take conditional exp and calculate
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Step 1.2: 𝔼⟨∇#:
√%:

, 𝑚& − ∇𝑓&⟩ ≈ 0, an overview



• Step 2: change                                          into 

where Error = 𝑂 (1/ 𝑘)
• Step 3: Take conditional exp

• Step 4:  For the leftovers in Step 1: change all 𝑟& into 𝑟&-$
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Repeat this process to the 1st epoch.
Complete the proof of Lemma A.2

Step 1.2: 𝔼⟨∇#:
√%:

, 𝑚& − ∇𝑓&⟩ ≈ 0, an overview
to



Recap of the whole proof 

Goal: want to prove: 𝔼⟨∇𝑓 𝑥A ,
N#
O#
⟩ > 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡∗ 𝔼⟨∇𝑓 𝑥A , ∇𝑓(𝑥A)⟩ > 0

𝔼(𝑚A) ≈ 𝔼(𝛻𝑓 𝑥A )Preparation:

𝔼⟨TP U#
√O#

, 𝑚A ⟩≈ 𝔼 ⟨TP U#
√O#

, 𝛻𝑓 𝑥A ⟩Step 1 (main part of the proof): 

𝔼 ⟨TP U#
√O#

, 𝛻𝑓 𝑥A ⟩ ≥ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡∗ 𝔼 ∇𝑓 𝑥A , ∇𝑓 𝑥A > 0Step 2:
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Our theory is consistent with experiments

Optimization error is small in the top blue region
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Optimization error is larger in the red regionSmooth boundaries



Recipe for Adam hyperparameter-tuning 
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Adam with default setting 
𝛽$, 𝛽' = (0.9, 0.999) fails

in your task

AdaShift? AdaBound? No need!

Change algorithm?

Tune up 𝛽'.
Try 0.9995, 0.9999, 0.99995, etc

Does not work better?

Try smaller 𝛽$.
Try 0.7, 0.5, 0.3, 0.1, etc

Adam with default setting 
𝛽$, 𝛽' = (0.9, 0.999)

works in your task, but 
want better performance

Tune down 𝛽' a little bit
Try 0.995, 0.99, 0.95, etc

Does not work better?



Summary: the behavior of Adam changes 
dramatically under different hyperparameters

Setting Hyperparameters Adam’s behavior

∀𝑓 𝑥 under A1 and A2 with 
𝐷3 = 0

𝛽2 is large and 𝛽$ < 𝛽2 Converges to stationary points (Ours)

∀𝑓 𝑥 under A1 and A2 with 
𝐷3 > 0

𝛽2 is large and 𝛽$ < 𝛽2 Converges to the neighborhood of 
stationary points (Ours)

∃ 𝑓 𝑥 under A1 and A2 𝛽2 is small and a wide range
of 𝛽$

Diverges to infinity (Ours)
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When increasing 𝛽': 
There is a phase transition from divergence to convergence.



Our work is tweeted by Dr. Kingma (1st author of Adam)
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Dr. Durk Kingma: inventor of Adam and VAE; co-founder of OpenAI; now a leader of Google Brain



Mainly based on: 
• Zhang, Chen, Shi, Sun, & Luo, Adam can converge without any modification on update 

rules. NeurIPS 2022
• Thanks to all the collaborators!
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Thank You!
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