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Adam: Adaptive Moment Estimation

2015 2022 )
Birth of Adam Adam converges
Claim: converges

Zhang, Chen, Shi, Sun, & Luo, Adam
Kingma and Ba. Adam: A method for can converge without any modification
stochastic optimization. ICLR 2015. on update rules. NeurlPS 2022

Cited by > 150k times

Reddi, Kale, & Kumar, On the convergence
2018 of Adam and beyond. ICLR 2018.

“Adam diverges” ICLR 2018 best paper

Total page: 55 2



What to expect from this talk?

* Question: Adam converges or not? How to tune it?

* For practitioners:
» Story of Adam: what it is, popularity, convergence
» how to tune hyperparameters of Adam

* For optimization theorists:
»Different meanings of “algorithm convergence”
» Divergence-convergence phase transition
»A method to analyze stochastic non-linear iterations



Empirical Guidance: Hyperparameter Tuning

* We prove that Adam can converge without ANY modification.

* Hyperparameter tunning suggestions:
* First, tune up f,.

Then, try different 1 with f; < \/E
* Detailed suggestions: end of talk

Tip for professors:
If DL experiments failed, ask students one more question:
have you tuned Adam hyperparameters?

(many think Adam Is tuning-free)
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Story of Adam: More Complete Version

Pre-ML Stage:
Development of 15t and 2" order methods

v

2011-2015 Stage 1: ML Development Stage: Adagrad, RMSProp, Adam

&~

1840-2010

_ 2018 Theo-Stage 2: Adam does not converge
2015-2022 Emp-St:fnge_ 2: variants: AMSGrad, Adashift, Adabound:
Popularity in Al
* 2022 Theo-Stage 3: Adam can converge
2022-7 Still dominating in ChatGPT

New algorithm?
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Pre-ML Stage: Classical Algorithms
(1840-2010)

* Central i1ssue In (unconstrained) nonlinear optimization:
Information v.s. computation

15t order methods: gradient descent (1847, Cauchy),
Accelerated 15t order method (Nesterov, 1983)

Second order methods: Newton method

Quasi-2"9 order methods:
BFGS (1970s), LBFGS (1980s), BB (1980s)



Stage 1: Development of Adam (2011-2015)

2011: Adagrad, JIMLR

Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online learning and
stochastic optimization." Journal of machine learning research 12.7 (2011).

2012: RMSProp, Lecture notes by Hinton

[citation] Lecture 6.5-rmsprop: Divide the gradient by a running average of its
recent magnitude
T Tieleman, G Hinton - COURSERA: Neural networks for machine learning, 2012

Y% Save DY Cite Cited by 6438 Related articles

2015: Adam, ICLR

Kingma,Ba. Adam: A method for stochastic optimization. ICLR 2015.

Total page: 55 9



Let us start with SGD--

* Consider mxin f(x) =X fi(x).

n: number of samples (or mini-batches of samples)
x: trainable parameters
* In the k-th iteration: Randomly sample 7, from {1,2, ..., n}

SGD (Stochastic gradient descent): xj ;1 = xp — 1 Vi, (i)

SGD with momentum (SGDM):
my, = (1 = BV, (x) + fimy—y <~ 1% order momentum
Xp41 = X — MMy, {1 lterate update

Total page: 55
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Adagrad

min f(x) = I, fi(x).
n: number of samples (or mini-batches of samples)

x: trainable parameters
In the k-th iteration: Randomly sample 7, from {1,2, ..., n}

Adagrad (Duchi et al.’11):

k-1 1
* Vg = (T) V-1 2 Vg (Xi) o Vg (xk)

Vka(Xk)
* Xp41 = X — Nk o lterate update

2" order momentum

Adagrad outperforms SGD significantly on language tasks
Becomes the default choice among NLPers, for ~5 years

Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online

learning and stochastic optimization." Journal of machine learning research 12.7 (2011).
Total page: 55
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RMSProp

AdaGrad: it treats all samples equally

RMSprop: use EMA (exponential moving average) to define v,

RMSProp (Hinton '12):

* v =(1- ,BZ)Vka(Xk) © Vf‘ck(xk) + B2Vk—1
Vka(Xk)
* Xk+1 = Xk — Nk =

Proposed in the lecture notes by Geoffrey Hinton
PyTorch default Choice: f, = 0.99
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Adam

mxin f(x) =X fi(x) . In the k-th iteration: Randomly sample 7} from {1,2, ..., n}

* Adam (Kingma and Ba’'15):
St
°* my = (1 — ﬁl)Vfrk(Xk) + ﬁlmk—l <:| 15t order momentum

* v =1 =BV (Xx) o Vg (xk) + B2vk—1 <~ 2 order momentum

X1 = Xie = M0 T {1 Iterate update

* f1: Controls the 1st-order momentum my,. Default setting: f; = 0.9

* [,: Controls the 2"9-order momentum vy. Default setting: f, = 0.999

Total page: 55
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Emp-Stage 2: Popularity in Al

* Adam becomes the most popular algorithms in deep learning
(DL). (>150,000 citations, by August 2023)

* Default in LLM (large language models)

optimizer = optim.Adam(net.parameters(), lr=args.lr, betas=(args.betal, args.beta2), eps=1e—08J
weight_decay=args.weightdecay, amsgrad=False)

* Empirical fact (sad?): Adam seems to be the only choice for LLMs like ChatGPT
--Recent new algorithms (Sophie, Lion, etc.)
cannot beat Adam on 100 billion-parameter models.
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Advantages of Adam

Validation loss
N
U

] — SGDI\/II
— SGD momentum —— Agam
ADAM .|
g 6
5
0.0 0.5 1.0 1.5 2.0 | | , , , ,
Ilterations le2 0 20 40 60 80 100
Epochs
BERT (from [Zhang et al.19]) GPT (from [Wang et al.22])

Adam significantly outperforms SGDM in training large-Al models
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Theo-Stage 2: “Adam does not converge”

Reddi et al.18 (ICLR Best paper):

For any 1,07 s.t. f1 < \/E , there exists a problem such that Adam
diverges

: A B Diverge (Reddi et al’18)
52 \\
0 b1
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Debate on “convergence i1ssue’

ICLR'18 paper reader’s comment:

-1 Is the problem with Adam, or with the theoretical Reader: “My claim is that...for any problem,
framework used to analyse it? a properly tuned-Adam will converge at least
Jeremy Bernstein as We” as SGD”

26 Apr 2018 (modified: 26 Apr 2018)  ICLR 2018 Conference Paper807 Public

ICLR’18 paper authors reply:

-1 TL;DR : Its with the algorithm ¢
ICLR 2018 Conference Paper807 Authors
01Jun 2018 ICLR 2018 Conference Paper807 Official Comment  Readers:

Authors: “Our paper shows that the algorithm

@ Everyone
Comment: Dear eremy, defined in the Adam paper has convergence
Thank you for your interest in the paper. |SS ues. !

To answer your question "Is the problem with Adam ....?" : Our paper shows that the algorithm defined in the
Adam paper (https://arxiv.org/pdf/1412.6980.pdf, Algorithm 1) (including one with decreasing step size
alpha) has convergence issues. Specifically, for any setting of the Adam parameters (beta_1, beta_2,
minibatch size, epsilon, etc) there is a convex optimization setting where Adam will not converge to the
optimal solution, even if decreasing learning rates are used. This is in contrast to algorithms like SGD which,
with decreasing learning rates, is guaranteed to converge.
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To Overcome Divergence, -

* Modify Adam

* AMSGrad, AdaFom [Reddi etal.’18, Chen et al.”18]: kKeep Vj, = Vj_q
» Slow convergence [Zhou et al.” 18]

* AdaBound [Luo etal.’ 19]: Impose constraint: v, € [C}, C}]
» Need to tune two extra hyperparameters

However, vanilla Adam works well for most practical applications!

Total page: 55
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Comparison: Adam vs Its variants

AMSGrad 1,843
Nadam 1,339
1,047

RAdam

AdaBound 479
AdaFom 217
AdaShift |45

0 500 1000 1500 2000
Citation

* *Disclaimer: contribution is not proportional to citation.
But citation might reflect the popularity among practitioners.
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However, Adam remains overwhelmingly popular

Adam 114,399
AMSGrad | 1,843
Nadam ({1,339
RAdam 1,047
AdaBound 479
AdaFom 217
AdaShift

0 30000 60000 90000 120000
Citation

* The attention Adam received Is astonishing!
* Partially because many variants bring new issues (e.g., slow)



Divergence theory does not match practice

Observation: the reported (B4, f2) actually satisfy divergence condition f; < \/E |

B Diverge (Reddi et al’18)

* Most deep learning tasks
(e.g. RL, NLP, CV, GAN, etc.):
f1 =096, =0.999

' "1, DCGAN, et
B2 Is there any gap between theory and practlce’? 999 o

Why is the divergence not observed?
@® First-order GAN, MSG-GAN:

k A B, =0,B, =0.999

0 /B]_ il Total page: 55 22
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Why Is divergence not observed?

* Reddi et al. 18 consider mxin f(x) =X fi(x)

Proof (Reddi et al. 18):

For any fixed B4, B> s.t. B1 < /B>, we can find an n to
construct the divergence example f(x)

* An important (but often ignored) feature: Reddi et al. fix f1, B> before
picking the problem (change n according to £, 5> )

* While In practice, parameters are often problem-dependent
(e.g. tuning Ir for GD)

* Conjecture: Adam might converge for fixed problem (or fixed n)



A simple illustration

blem class with n4

For fixed f4, B2, can fin\q n4 to construct %ounter—example

D

ith this (1, b2 converges on functions with other n,

lem class with n,

Question: Does Adam converge for fixed problem class (fixed n)?

24
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Assumptions

Consider mxin f(x) =YY" fi(x)
Al (L-smooth): assume Vf;(x) are L-Lipschitz continuous
. . 1 1
A2 (Affine Variance): - 31y || Vfi (9 — 1 By V() |13 < Dl VFGOII3 + Do

Remark: A2 is quite general:
» When D; = 0, A2 becomes bounded variance, commonly used in SGD analysis
» When Dy = 0, A2 becomes “Strong Growth Condition (SGC)” [Vaswani et al., 19]
- - Intuition: When || Vf (x)||=0 = we have || Vf;(x)||=0.
-- Do = 0 holds for overparametrized networks (Vaswani et al.19)

To our knowledge, A1+ A2 are the mildest assumptions for stochastic opt
algorithms (we do not use bounded gradient assumption)

Total page: 55
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Convergence results for large -

* Theorem 1: Consider the previous setting.
When f, =1 -0 (n Bl) and 1 < \/> < 1, Adam with stepsize n, = ﬁ converges to the
neighborhood of stationary points:

log T
A, E|| VI (xi) [I5 = ((1 —Bz)zx/T+ (1 —,32)00>-

RK: When Dy = 0 (e.g., for overparameterized models): Adam converges to stationary points

RK: Our result does not support 2 = 1, so does not cover SGDM
B Converge (ours)

I,

B2 \ We identify a safe region! (UNKNOWN BEFORE!)

0 51 1 Total page: 55 27



Remark: Convergence to neighborhood

* When Dy > 0: converges to a neighborhood of stationary points with
size O((1 — B2)Dy). (ak.a. “ambiguity zone” ).

* This 1Is common for
--constant-step SGD [Yan et al., 2018; Yu et al., 2019]
--diminishing-Ir adaptive gradient methods [Zaheer et al., 2018; Shi et al., 2020]:

X =X Tk m
k+1 — Xk — k
\/Vk

Intuition: Although 7, 1s diminishing, — \/_ may not decrease.
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Remark: Convergence to neighborhood.

Left: A toy example with Dy > 0 Right: A toy example with Dy = 0

Gradient norm

0.0200 3.0
-~ Adam with beta2=0.999 — [0,0.999]
——— Adam with beta2=0.997 ‘ [0.1,0.999]
0.0175 4 . — [0.3,0.999]
~—— Adam with beta2=0.995 2.5 .3,0.
—— Adam with beta2=0.993 — [0.5,0.999]
0.0150 4 SGD — [0.7,0.999]
2.0 A — [0.9,0.999]
0.0125 - £
o
| { o
0.0100 A k qCJ 1.5
S
o
()]
0.0075 4 104
0.0050 4
0.5 A
0.0025 A
0.0000 T T - - y r 0.0 T T T T T T - T T
0.0 0.2 0.4 0.6 0.8 1.0 0 20000 40000 60000 80000 100000 120000 140000
. . . Epoch . . .:Le8 iterations

Setting: Adam & SGD with Ir ng = ﬁ
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Discussion: different meanings of convergence
min f(x) = ) fi(x)

* Pre-ML era: n usually =1
Meaning of Convergence:

--Error term decays to 0 under certain rate (e.g., [|Vf(x)||? = O(ﬁ )

* Post-ML era: n usually >1, no access to the full gradient
Meaning of convergence: only to the neighborhood of solution sets
--For SGD: IVf (i) 12 = 0 (=) + 0 (7::D0)
--For Adam: [V Gel2 = 0 (=) + 0((1 = B2)Dy)

* The error floor might be acceptable because:
-- Dy = 0 for over-parameterized DNN (Vaswani et al.19)

— Error floor!

-- 5 ~0.999 in practice, so the error is small



How does Adam behave In the rest of the region?

* When B, is large: we have shown a positive result.

M Converge (ours)

B Diverge (ours)
4 2

IS

B2

V4
,
4
4
4
4
L4
’
’
(d
.////

B 1

>

* When B, is small: we will show that Adam can still diverge! (even if the
problem class is fixed)
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Divergence can happen when [, Is small

* Thm 2: For any fixed n, there exists a function f (x) satisfying A1 and A2, s.t.
when (B4, f2) are chosen in the orange region (size depends on 1), s.t.
Adam’ s iterates and function values diverge to infinity

* The region is precisely drawn (plotted by solving some analytic conditions)
* region enlarges with n

bbbbb

(dn=10
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Implication to practitioners

Case study: Bob is using Adam to train NNs. However, Adam with default
hyperparameter fails in his tasks.

Bob heard there is a well-known result that Adam can diverge.

So he wonders: shall | keep tuning hyperparameter to make it work?

Or shall | just give up and switch to other algorithms like AdaBound (which has 2
extra hyperparameters)?

Our suggestions:
1. Adam is still a theoretically justified algorithm. Please use it confidently!

2. Suggestions for hyperparameter tunning:
In one sentence: First, tune up B,. Then, try different f; with f; < \/E

Total page: 55 33
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Intuition behind convergence and divergence

Adam: x

=
N

R
N

”‘IIIIIIIIIIII ”

p—

S

t+1

At mg
= X —ntrvt

F(-—

Ve
= —Vf(x)

—

Converge

Diverge
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Proof Ideas for Convergence Analysis: An Overview

(1=BVfr, (k) +B1Mk—1

>0
\/<1—ﬁz>|7ffk(xk)onfk<xk>+ﬁzvk_1

Want to show: [E <\7f(xk),\T/nTik> =[E <|7f(xk),

Goal: want to prove: ]E(Vf(xk),%) > constant* E(Vf (x;),Vf(x)) > 0

Maijor challenge 1: \/v) appears in the denominator, may blow up.
Major challenge 2: momentum m, contains history information.

Major challenge 3: both m;, and /vy are random

Solutions:
Step 1:E <Vf(xk),:%> = [ <Vf/(;"),mk> ~ E <V’:/(;C"),Vf(xk)> (80% of the proof)
k k
Step 1-1: prove E(m;,) = E(Vf(x,)) (to getidea and intuition)

Vf(xk) vf( ,
f/;{" ymy ) = E( Qv’:‘),Vf(xk))(maln part of Step 1)

Step 2: E (Vf(xy), V{/EZ‘)) > constant* E(Vf (x;), Vf(x;)) > 0 (20% of the proof)

36 Total page: 55
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Step 1.1:Want to show: E(Vf (x,) —my) = 0

 Want To Show: E(Vf (x;,) —my) = 0
* What is the math problem here? Estimate difference of two sum’ s.

* Understanding Step (1): Full-Batch case withn =1

V() =1 = B) (Vfx) + BiVf () + . BEH7F ()
m;, = weighted average of past gradients =(1 — 1) (Vf(xg) + B1Vf (xp—q) +
W BETIVF(x1)

* Math Problem: Comparing weighted average over history v.g. current gradient

* Traditional Solution: | o |
analyze the spectrum of asymmetric update matrix (linear-algebra perspective)
& construct potential function (optimization perspective)



Step 1.1:Want to show: E(Vf (x,) —my) = 0

Want To Show: E(Vf (x;) —m;) = 0

What is the math problem here? Estimate difference of two sum’ s

Understanding Step (ii): Stochastic case n =2

More precisely: need to compare the following difference per epoch:
E(Vf(xk0) — (Mg + my1)) = E(go(xr,0) + 91 (o) — (Mo + My 1)) = 0

myo = (1 —B1)( gk,O(xk,O) + ﬁ1gk—1,1(xk—1,1) + ,3129k—1,0(xk—1,0) ---ﬁlz(k_l)_lg1,1(x1,1) + ,312(k_1)91,0(x1,0))
my1= (1 — B1)( 9k,1(xk,1 ) + ,31gk,o(xk,o) + 5129k—1,1(xk—1,1) ---,Blz(k_l)g1,1(x1,1) + ,Blz(k_l)+1g1,o(x1,o))

Math problem: comparison of two  “co-" growing exponentially-averaged sum’ s

Our idea: Find certain intrinsic properties of these sum’ s under random permutation



Step 1.1: E(Vf(x,) —my) = 0, An overview

 Want To Show: E(Vf(x;,) —my) = 0
* Solution: construct a simplified system by assuming x fixed

* Color-ball of the 15t kind: consider a box contains two balls labeled ¢g and ¢;.
In each round (epoch), we randomly sample balls from the box without replacement,
then we put them both back.

We denote the 1st sampled label in the k-th epoch as a, and the 2nd sampled one as by.

* We define the following quantities: (These mimic momentum, but with fixed x)

my = by + 510«1: —I-ﬁlbk 1 —I- Bay_ pepessk Bl(k Dy, + Bz(k D,

mlk mlk 1 m11

mo = ag +/3lbk 1+/31ak 1+ +52(k D=1p, +/32(k Y
v _/
mo,k m()k; 1 mO,l

(Notation: m; ,, denotes the partial-sum of m; in the k-th epoch)
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Step 1.1: E(Vf(x,) —my) = 0, An overview

 Want To Show: E(Vf(xy) —my) = 0

* Step 1-1 a): construct a simplified system by assuming x fixed
* Color-ball of the 15t kind: We further define the following quantities: (These mimic

gradient

fi,k

f1,6—1

fi=a(Q+B+B7+ 57 +§f(k_1) + 5f(k_1)+i)

R <2
fi1

fo=co(l+B1+Bi+ 55 +§f(k_l) + 5f(k_1)+i)

fo,x

Lemma A.l. In the color-ball model of the 1st kind, we have

E

|

Zmz’—Zfz’

1=0

fo,k—1

1

1=0

|

i
fo1

Key finding:
No low-order terms!

_ BQ(k—lH—l

— |

Total page: 55
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Step 1.1: E(Vf(x,) —my) = 0, An overview

Step 1: Take conditional expectation up to k-th epoch, calculate the partial sum Eg [;(m;x — fix) |

@ O : Ch
Order: [0, 1] Order: [1, 0] Sum of all possible 71,k + Mo,k:

myk: . 5 B. . (2 + )8)
+ + =
mo,k : @ (2+5) \

Step 2: We move one step further to calculate

1 1
IEk—lIEk[Zi(mi,k — fi,k) + [Zi(mi,k—l - fi,k—l)] E, Zmzk _ Zflk] - B, Zm@ k] (14 61) (co + 1)
Sum of all Sum of all Sum of all
T e c T o - B - -% (co +c1)
®2+h @ (5+28°+5°) @ (F° +§2B4 + %)

"

2+6) (B+26% + %) @ (B°+28'+6°)

| In

2f1 |(2B°+2ﬂ1+2ﬁ2+263 S ig)

2f0 ‘I Zﬁo -+ 261 —I-r 252 + 233J ) .; Co -Cq 4/ : cancel out

I N

Observe repeated cancelation! We observe that only the highest order term remains in the calculation!

Repeat this process until k=1. We complete the proof of Lemma A.1
Total page: 55 41



Step 1.1: E(Vf(x,) —my) = 0, continued

* What we did so far: Step 1-1 (a): assume x fixed, find certain property

Lemma A.l. In the color-ball model of the 1st kind, we have

2k—1)4+1 / ¢ -
E[Zizomi—ZLofz‘F 1( & (_70_7)

* Continue Step 1-1 (b): consider x changing

1) (2) (3 . . .
E(Vf(x,) —my) L)(); E(Vf(x;) —mg) with  “fixed x” w 0(BY) = 0

. (1) Bounded Update Rule of Adam |(2) diminishing stepsize (3) Lipschitz condition.

Combined We\hme\lg(xk) — g(x,_)| = 01 /Vk)

(1) (2) (3) can only be applied to Adam, not SGD

[otal page: b5 42




Step 1.2: E(z—];"

— V/fr) = 0, an overview

Greater than O

Still unclear

Recall our goal: IE(ka,:;lTik) >0 / /

Simple decomposition: E(ka,% = E <ka,\v/%_’;> +|[E <ka’3];_i — \Tv_kk>
Recall In Step 1-1, we have shown: E(Vf (x;) —m;) = 0

Now In Step 1-2, We will show: E <ka'\/__ — :7—_"> = [E <3&,gk — mk> 0

* Idea in Step 1-2: 1) control the movement of e

VVk

2) Extend the proof in Step 1-1

Total page: 55
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Step 1.2: E(%,mk — Vfi,) = 0, an overview

* Want to show: E(%,mk — Vfi) = 0 when B, is large

* Step |: Show that || 3—]:; — %II =0 (ﬁ) when [, is large (requires several technical
-1

lemmas, omitted here)

* Step Il: we construct another color-ball model

* Color-ball of the 2" kind: Consider the same setting as the previous color ball. We further
introduce a new seq of r.v. {rj} s.t. ; is fixed when fixing the history up to j-th round and:

1

BV _7:].,]{3
v

rj =71 =

Now we define the following quantities:

TEkM1 = Tk Pk + ,Bazg+§zbk_1 -+ B3ak_£+ § 3 e +§2(k—1)b1 + ,32(k_1)+1a1/

mi K miy k—1 my, 1

TEMo =Tk | a;z—i—@lbk_l + B2ak_£+ 2 8k +§2(k_1)_1b1 + 52(/’9—1)(13

B o
mo,k mO,k——l mi,1



Step 1.2: IE(vf"" m; — Vi) = 0, an overview

* Step Il: we construct another color-ball model

* Color-ball of the 2" kind: Now we define the following quantities:

refi =1k | c1(14 b1 —I-ﬁf—i-ﬁ?’ +51(k D +52(k 1)+1)
N N ~
f1,k fi1,6—1 f1,1

rifo=rx | co(Q+ B+ L+ B3+ pIC Y 4 gD
—— N —

_J
fo,x fo k=1 f0,1

Lemma A.2. Consider the color-ball model of the 2nd kind, we have

E (Yo memi — Y T'kfi] =g (-2 -9) 4
_ _ !

Total page: 55 Same as in Step 1-1 45
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Step 1.2: IE(W" m; — Vi) = 0, an overview

* We introduce 4 steps to prove Lemma A.2:

* Step 1: Take conditional exp and calculate [Ey [rk ZLO mMi k — Tk Z;-lzo fi]

@ o ®:c. N

Order:[0,1]  Order: [1, 0] Sum of all possible 1,k + ™o,k

H": e @) +I(-:}iﬁ @) He (2+5
B B ©) B e T

M2y, WO +28 +262+26°+...)

+
W20 H@ (23 +28+282+28%+...)

B o0 W2  Ee (-5 -26°-26°..)

Total page: 55
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vV
Step 1.2: E(- LY
e Step 2: change Ek [rk ZLO mi,k_l] irggo K ['rk—l ZLO mi,k_l] + Error

where Error = 0 (1/Vk)
* Step 3: Take conditional exp * Ex—1Eg [Tk_1 ZLO mi,k—l-‘ = Ex_1 ['rk—l Z,}zo mi,k—l-‘

— Vf,) = 0, an overview

* Step 4: For the leftovers in Step 1: change all 7 Into 1,1

®: G ¢, My .,

Sum of all possible 1,k—1 + M0,k—1;

H - W (50 50) _EHepB+268°+5)
B o [ (5@ 50) (B+28% +8°)

Order: [0, 1] Order: [1, 0]

2
L H (s @)

| W

o =

Bl o,k .2f0 ..

-B3+284+...)
+Error

BO® -3+284+...)

1UuLdl pdye. 0o

)
) Repeat this process to the 1st epoch.

+Error

Complete the proof of Lemma A.2
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Recap of the whole proof

Goal: want to prove: IE(Vf(xk),:/nT_"k) > constant* E(Vf (x;),Vf(x;)) >0

Preparation: E(m;) = E(Vf(x}))

Vf(xg)
\/}7k

my ) =~ E(Z2 7 ()

Step 1 (main part of the proof): E{ 7
k

Vf(xg)

Step 2: E o

V[ (x,)) = constant* E(Vf (xy),Vf(xx)) >0

Total page: 55
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Our theory Is consistent with experiments

Optin Optimization error ¢ ©MOOth boundaries j,,

(a) Function (2) (b) MNIST (c) CIFAR-10

Total page: 55
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Recipe for Adam hyperparameter-tuning

AdaShift? AdaBound?

Char?e algorithm?

Adam with defaL'JIt setting

No need!

(81, B2) = (0.9, 0.999) fails
In your task

Adam with default setting

(81, B2) = (0.9, 0.999)
works in your task, but

want better performance

Tune up Ss. 1

" Try 0.9995, 0.9999, 0.99995, etc

Try 0.995, 0.99, 0.95, etc

Total page: 55

B2

1.‘, Il Diverge (ours)

[ Converge (ours)

TN

4
4
4
4
;
4
;
4
-’
/
./

B1 1
rk better?

Qes not wo

Try 0.7,

Try smaller B;.

0.5,0.3, 0.1, etc

l Anot work better?
Tune down B, a little bit

ol



Summary: the behavior of Adam changes
dramatically under different hyperparameters

M Converge (ours)

1* I Diverge (ours)

IS

When increasing f>:
There is a phase transition from divergence to convergence.

b
1
Hyperparameters Adam’ s behavior
Vf(x) under Al and A2 with B, is large and B; < \/’3_2 Converges to stationary points (Ours)
DO == 0
Vf(x) under A1 and A2 with B, is large and By < /B> Converges to the neighborhood of
Dy >0 stationary points (Ours)
3 f(x) under Al and A2 p- is small and a wide range Diverges to infinity (Ours)
of ﬁl

Total page: 55 52



Our work Is tweeted by Dr. Kingma (1st author of Adam)

Dr. Durk Kingma: inventor of Adam and VAE; co-founder of OpenAl; now a leader of Google Brain

Durk Kingma
g @dpkingma
“Adam can converge without any modification on

pdate rules”
Lo /abs/2208.09632

Proves that (vanilla) Adam is theoretically justified

without any modification. Presented at NeurlPS'22.
BEEx

arxiv.org

@ 0 O X
Durk Kingma @dpkingma - 12H3H
g [B1€ @dpkingma
By Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, Zhi-Quan Luo.
O 1 ! Q s X

Durk Kingma @dpkingma - 12H3H
Also provides suggestions for tuning hyperparameters betal and beta2.

O 1 0 Q 12 5 1

Durk Kingma @dpkingma - 12H3H

Author handles:

@ericzhang0410

@RuoyuSun_Ul

(Twitter, implement tweet edit furationality please? kthx)

a I. iv Adam Can Converge Without Any Modification On Update ...
Ever since Reddi et al. 2018 pointed out the divergence issue
of Adam, many new variants have been designed to obtain ...

Kevin Patrick Murphy @... - 2022/12/4
E4F7:55 - 2022512 A3 ' ' I’ll need to add this ref to my book!

O | Q 15 ihi

795 35|HEX 406 SVURE
e o320

Total paye. vo 03



Mainly based on:

« Zhang, Chen, Shi, Sun, & Luo, Adam can converge without any modification on update
rules. NeurlPS 2022

* Thanks to all the collaborators!

Total page: 55 54



Thank You!



