Converge or Diverge? A Story of Adam

Yushun Zhang

School of Data Science,
The Chinese University of Hong Kong, Shenzhen

Sharing at Tsinghua University. Thanks Prof. Jian Li for the invitation!
Sep 28th, 2023

Adam: Adaptive Moment Estimation

```
2015
Birth of Adam Claim: converges
Kingma and Ba. Adam: A method for stochastic optimization. ICLR 2015. Cited by > 150k times
```


2022

"Adam converges"

Zhang, Chen, Shi, Sun, \& Luo, Adam can converge without any modification on update rules. NeurIPS 2022

$$
2018 \text { "Adam diverges" }
$$

What to expect from this talk?

- Question: Adam converges or not? How to tune it?
- For practitioners:
> Story of Adam: what it is, popularity, convergence
$>$ how to tune hyperparameters of Adam
- For optimization theorists:
>Different meanings of "algorithm convergence"
>Divergence-convergence phase transition
\Rightarrow A method to analyze stochastic non-linear iterations

Empirical Guidance: Hyperparameter Tuning

- We prove that Adam can converge without ANY modification.
- Hyperparameter tunning suggestions:
- First, tune up β_{2}. Then, try different β_{1} with $\beta_{1}<\sqrt{\beta_{2}}$
- Detailed suggestions: end of talk

Tip for professors:
If DL experiments failed, ask students one more question:
have you tuned Adam hyperparameters?
(many think Adam is tuning-free)

Contents

1. A Story of Adam

2. Main Results
3. Proof Ideas
4. Experiments and Summary

Story of Adam: More Complete Version

Pre-ML Stage: Classical Algorithms (1840-2010)

- Central issue in (unconstrained) nonlinear optimization:

information v.s. computation

$1^{\text {st }}$ order methods: gradient descent (1847, Cauchy), Accelerated $1^{\text {st }}$ order method (Nesterov, 1983)

Second order methods: Newton method

Quasi-2 ${ }^{\text {nd }}$ order methods: BFGS (1970s), LBFGS (1980s), BB (1980s)

Stage 1: Development of Adam (2011-2015)

2011: Adagrad, JMLR

Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online learning and stochastic optimization." Journal of machine learning research 12.7 (2011).

2012: RMSProp, Lecture notes by Hinton

[citation] Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
T Tieleman, G Hinton - COURSERA: Neural networks for machine learning, 2012
Save 50 Cite Cited by 6438 Related articles

2015: Adam, ICLR

Kingma,Ba. Adam: A method for stochastic optimization. ICLR 2015.

Let us start with SGD…

- Consider $\min _{x} f(x):=\sum_{i=1}^{n} f_{i}(x)$.
n : number of samples (or mini-batches of samples)
x : trainable parameters
- In the k-th iteration: Randomly sample τ_{k} from $\{1,2, \ldots, n\}$

SGD (Stochastic gradient descent): $x_{k+1}=x_{k}-\eta_{k} \nabla \mathrm{f}_{\tau_{\mathrm{k}}}\left(\mathrm{x}_{\mathrm{k}}\right)$
SGD with momentum (SGDM):

$$
\begin{array}{ccl}
m_{k}=\left(1-\beta_{1}\right) \nabla \mathrm{f}_{\tau_{\mathrm{k}}}\left(\mathrm{x}_{\mathrm{k}}\right)+\beta_{1} m_{k-1} & \ddots & 1^{\text {st }} \text { order momentum } \\
x_{k+1}=x_{k}-\eta_{k} m_{k} & \ddots & \text { Iterate update }
\end{array}
$$

Adagrad

```
min
    n: number of samples (or mini-batches of samples)
    x: trainable parameters
In the k-th iteration: Randomly sample }\mp@subsup{\tau}{k}{}\mathrm{ from {1,2,...,n}
```


Adagrad (Duchi et al.'11):

- $v_{k}=\left(\frac{k-1}{k}\right) \mathrm{V}_{\mathrm{k}-1}+\frac{1}{k} \nabla \mathrm{f}_{\tau_{\mathrm{k}}}\left(\mathrm{x}_{\mathrm{k}}\right) \circ \nabla \mathrm{f}_{\tau_{\mathrm{k}}}\left(\mathrm{x}_{\mathrm{k}}\right)$
- $x_{k+1}=x_{k}-\eta_{k} \frac{\nabla \mathrm{f}_{\tau_{\mathrm{k}}}\left(\mathrm{x}_{\mathrm{k}}\right)}{\sqrt{v_{k}}}$
$2^{\text {nd }}$ order momentum

Iterate update

Adagrad outperforms SGD significantly on language tasks Becomes the default choice among NLPers, for ~ 5 years

Duchi, John, Elad Hazan, and Yoram Singer. "Adaptive subgradient methods for online learning and stochastic optimization." Journal of machine learning research 12.7 (2011).

RMSProp

AdaGrad: it treats all samples equally
RMSprop: use EMA (exponential moving average) to define v_{k}

RMSProp (Hinton '12):

- $v_{k}=\left(1-\beta_{2}\right) \nabla \mathrm{f}_{\tau_{\mathrm{k}}}\left(\mathrm{x}_{k}\right) \circ \nabla \mathrm{f}_{\tau_{\mathrm{k}}}\left(x_{k}\right)+\beta_{2} v_{k-1}$
 $2^{\text {nd }}$ order momentum
- $x_{k+1}=x_{k}-\eta_{k} \frac{\nabla \mathrm{f}_{\tau_{\mathrm{k}}}\left(\mathrm{x}_{\mathrm{k}}\right)}{\sqrt{v_{k}}}$

Iterate update

Proposed in the lecture notes by Geoffrey Hinton
PyTorch default Choice: $\beta_{2}=0.99$

Adam

- $\min _{x} f(x):=\sum_{i=1}^{n} f_{i}(x)$. In the k-th iteration: Randomly sample τ_{k} from $\{1,2, \ldots, n\}$
- Adam (Kingma and Ba’15):
- $m_{k}=\left(1-\beta_{1}\right) \nabla \mathrm{f}_{\tau_{\mathrm{k}}}\left(\mathrm{x}_{\mathrm{k}}\right)+\beta_{1} m_{k-1}$
- $v_{k}=\left(1-\beta_{2}\right) \nabla \mathrm{f}_{\tau_{\mathrm{k}}}\left(\mathrm{x}_{k}\right) \circ \nabla \mathrm{f}_{\tau_{\mathrm{k}}}\left(x_{k}\right)+\beta_{2} v_{k-1}$

$1^{\text {st }}$ order momentum
- $x_{k+1}=x_{k}-\eta_{k} \frac{\sqrt{1-\beta_{2}^{k}}}{1-\beta_{1}^{k}} \frac{m_{k}}{\sqrt{v_{k}}}$

- β_{1} : Controls the $1^{\text {st }}$-order momentum m_{k}. Default setting: $\beta_{1}=0.9$
- β_{2} : Controls the $2^{\text {nd }}$-order momentum v_{k}. Default setting: $\beta_{2}=0.999$

Emp-Stage 2: Popularity in AI

- Adam becomes the most popular algorithms in deep learning (DL). (>150,000 citations, by August 2023)
- Default in LLM (large language models)

```
optimizer = optim.Adam(net.parameters(), lr=args.lr, betas=(args.beta1, args.beta2), eps=1e-08,|
    weight_decay=args.weightdecay, amsgrad=False)
```

- Empirical fact (sad?): Adam seems to be the only choice for LLMs like ChatGPT --Recent new algorithms (Sophie, Lion, etc.) cannot beat Adam on 100 billion-parameter models.

Advantages of Adam

BERT (from [Zhang et al.19])

GPT (from [Wang et al.22])

Adam significantly outperforms SGDM in training large-AI models

Theo-Stage 2: "Adam does not converge"

Reddi et al. 18 (ICLR Best paper):
For any β_{1}, β_{2} s.t. $\beta_{1}<\sqrt{\beta_{2}}$, there exists a problem such that Adam diverges

Debate on "convergence issue"

ICLR'18 paper reader's comment:

Is the problem with Adam, or with the theoretical framework used to analyse it?
Jeremy Bernstein
26 Apr 2018 (modified: 26 Apr 2018) ICLR 2018 Conference Paper807 Public

ICLR'18 paper authors reply:

TL;DR : Its with the algorithm
ICLR 2018 Conference Paper807 Authors
01 Jun 2018 ICLR 2018 Conference Paper807 Official Comment Readers:
(3) Everyone

Comment: Dear Jeremy

Thank you for your interest in the paper.
To answer your question "Is the problem with Adam?" : Our paper shows that the algorithm defined in the Adam paper (https://arxiv.org/pdf/1412.6980.pdf, Algorithm 1) (including one with decreasing step size alpha) has convergence issues. Specifically, for any setting of the Adam parameters (beta_1, beta_2, minibatch size, epsilon, etc) there is a convex optimization setting where Adam will not converge to the optimal solution, even if decreasing learning rates are used. This is in contrast to algorithms like SGD which, with decreasing learning rates, is guaranteed to converge.

Reader: "My claim is that...for any problem, a properly tuned-Adam will converge at least as well as SGD"

Authors: "Our paper shows that the algorithm defined in the Adam paper has convergence issues."

To Overcome Divergence, …

- Modify Adam
- AMSGrad, AdaFom [Reddi et al.' ${ }^{18, \text { Chen et al.' } 18 \text {]: } \text { keep } v_{k} \geq v_{k-1}, ~}$
$>$ Slow convergence [Zhou et al.' 18]
- AdaBound [Luo et al.' 19]: Impose constraint: $v_{k} \in\left[C_{l}, C_{u}\right]$
$>$ Need to tune two extra hyperparameters

However, vanilla Adam works well for most practical applications!

Comparison: Adam vs its variants

- *Disclaimer: contribution is not proportional to citation. But citation might reflect the popularity among practitioners.

However, Adam remains overwhelmingly popular

- The attention Adam received is astonishing!
- Partially because many variants bring new issues (e.g., slow)

Divergence theory does not match practice

Observation: the reported (β_{1}, β_{2}) actually satisfy divergence condition $\beta_{1}<\sqrt{\beta_{2}}$!

$$
\begin{gathered}
\text { Most deep learning tasks } \\
\text { (e.g. RL, NLP, CV, GAN, etc.): } \\
\beta_{1}=0.9, \beta_{2}=0.999
\end{gathered}
$$

β_{2} Is there any gap between theory and practice? ${ }^{\text {I DCGAN, etc: }}$
Why is the divergence not observed?

$$
\beta_{1}=0.9, \beta_{2}=0.95
$$

First-order GAN, MSG-GAN:
$\beta_{1}=0, \beta_{2}=0.999$

Why is divergence not observed?

- Reddi et al. 18 consider $\min _{\mathrm{x}} f(x):=\sum_{i=1}^{n} f_{i}(x)$

Proof (Reddi et al. 18):
For any fixed β_{1}, β_{2} s.t. $\beta_{1}<\sqrt{\beta_{2}}$, we can find an n to construct the divergence example $f(x)$

- An important (but often ignored) feature: Reddi et al. fix β_{1}, β_{2} before picking the problem (change n according to β_{1}, β_{2})
- While in practice, parameters are often problem-dependent (e.g. tuning Ir for GD)
- Conjecture: Adam might converge for fixed problem (or fixed \boldsymbol{n})

Contents

1. Story of Adam

2. Main Results

3. Proof Ideas
4. Experiments and Summary

Assumptions

- Consider $\min _{x} f(x):=\sum_{i=1}^{n} f_{i}(x)$
- A1 (L-smooth): assume $\nabla f_{i}(x)$ are L-Lipschitz continuous
- A2 (Affine Variance): $\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}(\mathrm{x})-\frac{1}{\mathrm{n}} \sum_{i=1}^{n} \nabla f_{i}(x)\right\|_{2}^{2} \leq D_{1}\|\nabla f(\mathrm{x})\|_{2}^{2}+D_{0}$
- Remark: A2 is quite general:
$>$ When $D_{1}=0$, A2 becomes bounded variance, commonly used in SGD analysis
$>$ When $D_{0}=0$, A2 becomes "Strong Growth Condition (SGC)" [Vaswani et al., 19]
-- Intuition: When $\|\nabla f(\mathrm{x})\|=0 \Rightarrow$ we have $\left\|\nabla f_{i}(\mathrm{x})\right\|=0$.
-- $\boldsymbol{D}_{\mathbf{0}}=\mathbf{0}$ holds for overparametrized networks (Vaswani et al.19)
- To our knowledge, A1+ A2 are the mildest assumptions for stochastic opt algorithms (we do not use bounded gradient assumption)

Convergence results for large $\boldsymbol{\beta}_{\mathbf{2}}$

- Theorem 1: Consider the previous setting.

When $\beta_{2} \geq 1-O\left(\frac{1-\beta_{1}^{n}}{n^{3.5}}\right)$ and $\beta_{1}<\sqrt{\beta_{2}}<1$. Adam with stepsize $\eta_{k}=\frac{1}{\sqrt{k}}$ converges to the neighborhood of stationary points:

$$
\min _{k \in[1, T]} \mathbb{E}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}=O\left(\frac{\log T}{\left(1-\beta_{2}\right)^{2} \sqrt{T}}+\left(1-\beta_{2}\right) D_{0}\right)
$$

RK: When $D_{0}=0$ (e.g., for overparameterized models): Adam converges to stationary points RK: Our result does not support $\beta_{2}=1$, so does not cover SGDM

Remark: Convergence to neighborhood

- When $D_{0}>0$: converges to a neighborhood of stationary points with size $0\left(\left(1-\beta_{2}\right) D_{0}\right)$. (a.k.a. "ambiguity zone").
- This is common for
--constant-step SGD [Yan et al., 2018; Yu et al., 2019]
--diminishing-Ir adaptive gradient methods [Zaheer et al., 2018; Shi et al., 2020]:

$$
x_{k+1}=x_{k}-\frac{\eta_{k}}{\sqrt{v_{k}}} m_{k}
$$

Intuition: Although η_{k} is diminishing, $\frac{\eta_{k}}{\sqrt{v_{k}}}$ may not decrease.

Remark: Convergence to neighborhood.

Left: A toy example with $D_{0}>0$

Right: A toy example with $D_{0}=0$

Setting: Adam \& SGD with Ir $\eta_{k}=\frac{1}{\sqrt{k}}$

Discussion: different meanings of convergence $\min _{x} f(x):=\sum_{i=1}^{n} f_{i}(x)$

- Pre-ML era: n usually $=1$

Meaning of Convergence:

--Error term decays to 0 under certain rate (e.g., $\left\|\nabla f\left(x_{k}\right)\right\|^{2}=O\left(\frac{1}{\sqrt{k}}\right)$)

- Post-ML era: n usually >1, no access to the full gradient

Meaning of convergence: only to the neighborhood of solution sets
--For SGD: $\left\|\nabla f\left(x_{k}\right)\right\|^{2}=O\left(\frac{1}{\sqrt{k}}\right)+O\left(\eta_{k} D_{0}\right)$

Error floor!

--For Adam: $\left\|\nabla f\left(x_{k}\right)\right\|^{2}=O\left(\frac{1}{\sqrt{k}}\right)+O\left(\left(1-\beta_{2}\right) D_{0}\right)$

- The error floor might be acceptable because:
-- $D_{0}=0$ for over-parameterized DNN (Vaswani et al.19)
-- $\beta_{2} \sim 0.999$ in practice, so the error is small

How does Adam behave in the rest of the region?

- When β_{2} is large: we have shown a positive result.

- When β_{2} is small: we will show that Adam can still diverge! (even if the problem class is fixed)

Divergence can happen when $\boldsymbol{\beta}_{2}$ is small

- Thm 2: For any fixed n, there exists a function $f(x)$ satisfying $\mathbf{A} 1$ and $\mathbf{A} 2$, s.t. when $\left(\beta_{1}, \beta_{2}\right)$ are chosen in the orange region (size depends on n), s.t. Adam' s iterates and function values diverge to infinity
- The region is precisely drawn (plotted by solving some analytic conditions)
- region enlarges with n

(b) $n=10$

(c) $n=50$

(d) $n=100$

Implication to practitioners

- Case study: Bob is using Adam to train NNs. However, Adam with default hyperparameter fails in his tasks.
- Bob heard there is a well-known result that Adam can diverge.
- So he wonders: shall I keep tuning hyperparameter to make it work?
- Or shall I just give up and switch to other algorithms like AdaBound (which has 2 extra hyperparameters)?

Our suggestions:

1. Adam is still a theoretically justified algorithm. Please use it confidently!
2. Suggestions for hyperparameter tunning:

In one sentence: First, tune up β_{2}. Then, try different β_{1} with $\beta_{1}<\sqrt{\beta_{2}}$

Contents

1. Story of Adam
2. Main Results

3. Proof Ideas

4. Experiments and Summary

Intuition behind convergence and divergence Adam: $\boldsymbol{x}^{\boldsymbol{t + 1}}=\boldsymbol{x}^{\boldsymbol{t}}-\boldsymbol{\eta}_{\boldsymbol{t}} \frac{\boldsymbol{m}_{\boldsymbol{t}}}{\sqrt{v_{t}}}$
$\beta_{2}=1$
$\beta_{2}=0$

Converge

Diverge

Proof Ideas for Convergence Analysis: An Overview

Want to show: $\mathbb{E}\left\langle\nabla f\left(x_{k}\right), \frac{m_{k}}{\sqrt{v_{k}}}\right\rangle=\mathbb{E}\left\langle\nabla f\left(x_{k}\right), \frac{\left(1-\beta_{1}\right) \nabla f_{\tau_{k}}\left(x_{k}\right)+\beta_{1} m_{k-1}}{\sqrt{\left(1-\beta_{2}\right) \nabla f_{\tau_{k}}\left(x_{k}\right) \circ \nabla f_{\tau_{k}}\left(x_{k}\right)+\beta_{2} v_{k-1}}}\right\rangle>0$
Goal: want to prove: $\mathbb{E}\left\langle\nabla f\left(x_{k}\right), \frac{m_{k}}{\sqrt{v_{k}}}\right\rangle>$ constant $* \mathbb{E}\left\langle\nabla f\left(x_{k}\right), \nabla f\left(x_{k}\right)\right\rangle>0$
Major challenge 1: $\sqrt{v_{k}}$ appears in the denominator, may blow up.
Major challenge 2: momentum m_{k} contains history information.
Major challenge 3: both m_{k} and $\sqrt{v_{k}}$ are random
Solutions:
Step 1: $\mathbb{E}\left\langle\nabla f\left(x_{k}\right), \frac{m_{k}}{\sqrt{v_{k}}}\right\rangle=\mathbb{E}\left\langle\frac{\nabla f\left(x_{k}\right)}{\sqrt{v}_{k}}, m_{k}\right\rangle \approx \mathbb{E}\left\langle\frac{\nabla f\left(x_{k}\right)}{\sqrt{v}_{k}}, \nabla f\left(x_{k}\right)\right\rangle$ (80\% of the proof)
Step 1-1: prove $\mathbb{E}\left(m_{k}\right) \approx \mathbb{E}\left(\nabla f\left(x_{k}\right)\right)$ (to get idea and intuition)
Step 1-2: prove $\mathbb{E}\left\langle\frac{\nabla f\left(x_{k}\right)}{\sqrt{v_{k}}}, m_{k}\right\rangle \approx \mathbb{E}\left\langle\frac{\nabla f\left(x_{k}\right)}{\sqrt{v_{k}}}, \nabla f\left(x_{k}\right)\right\rangle$ (main part of Step 1)
Step 2: $\mathbb{E}\left\langle\nabla f\left(x_{k}\right), \frac{\nabla f\left(x_{k}\right)}{\sqrt{ } v_{k}}\right\rangle \geq$ constant $* \mathbb{E}\left\langle\nabla f\left(x_{k}\right), \nabla f\left(x_{k}\right)\right\rangle>0$ (20\% of the proof)

Step 1.1:Want to show: $\mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \approx 0$

- Want To Show: $\mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \approx 0$
- What is the math problem here? Estimate difference of two sum' s.
- Understanding Step (i): Full-Batch case with $\mathbf{n}=1$

$$
\nabla f\left(x_{k}\right)=\left(1-\beta_{1}\right)\left(\nabla f\left(x_{k}\right)+\beta_{1} \nabla f\left(x_{k}\right)+\ldots \beta_{1}^{k-1} \nabla f\left(x_{k}\right)\right)
$$

$$
m_{k}=\text { weighted average of past gradients }=\left(1-\beta_{1}\right)\left(\nabla f\left(x_{k}\right)+\beta_{1} \nabla f\left(x_{k-1}\right)+\right.
$$

$$
\left.\ldots \beta_{1}^{k-1} \nabla f\left(x_{1}\right)\right)
$$

- Math Problem: Comparing weighted average over history v.g. current gradient
- Traditional Solution:
analyze the spectrum of asymmetric update matrix (linear-algebra perspective) \& construct potential function (optimization perspective)

Step 1.1:Want to show: $\mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \approx 0$

- Want To Show: $\mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \approx 0$
- What is the math problem here? Estimate difference of two sum' s
- Understanding Step (ii): Stochastic case n =2
- More precisely: need to compare the following difference per epoch:
- $\mathbb{E}\left(\nabla f\left(x_{k, 0}\right)-\left(m_{k, 0}+m_{k, 1}\right)\right)=\mathbb{E}\left(g_{0}\left(x_{k, 0}\right)+g_{1}\left(x_{k, 0}\right)-\left(m_{k, 0}+m_{k, 1}\right)\right) \approx 0$

$$
\begin{aligned}
& m_{\mathrm{k}, 0}=\left(1-\beta_{1}\right)\left(g_{k, 0}\left(x_{k, 0}\right)+\beta_{1} g_{k-1,1}\left(x_{k-1,1}\right)+\beta_{1}^{2} g_{k-1,0}\left(x_{k-1,0}\right) \ldots \beta_{1}^{2(k-1)-1} g_{1,1}\left(x_{1,1}\right)+\beta_{1}^{2(k-1)} g_{1,0}\left(x_{1,0}\right)\right) \\
& m_{k, 1}=\left(1-\beta_{1}\right)\left(g_{k, 1}\left(x_{k, 1}\right)+\beta_{1} g_{k, 0}\left(x_{k, 0}\right)+\beta_{1}^{2} g_{k-1,1}\left(x_{k-1,1}\right) \ldots \beta_{1}^{2(k-1)} g_{1,1}\left(x_{1,1}\right)+\beta_{1}^{2(k-1)+1} g_{1,0}\left(x_{1,0}\right)\right)
\end{aligned}
$$

- Math problem: comparison of two "co-" growing exponentially-averaged sum' s
- Our idea: Find certain intrinsic properties of these sum' s under random permutation

Step 1.1: $\mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \approx 0$, An overview

- Want To Show: $\mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \approx 0$
- Solution: construct a simplified system by assuming \boldsymbol{x} fixed
- Color-ball of the $1^{\text {st }}$ kind: consider a box contains two balls labeled c_{0} and c_{1}. In each round (epoch), we randomly sample balls from the box without replacement, then we put them both back.
We denote the 1st sampled label in the k -th epoch as a_{k} and the 2 nd sampled one as b_{k}.
- We define the following quantities: (These mimic momentum, but with fixed x)

$$
\begin{aligned}
m_{1} & :=\underbrace{b_{k}+\beta_{1} a_{k}}_{m_{1, k}}+\underbrace{\beta_{1}^{2} b_{k-1}+\beta_{1}^{3} a_{k-1}}_{m_{1, k-1}}+\cdots+\underbrace{\beta_{1}^{2(k-1)} b_{1}+\beta_{1}^{2(k-1)+1} a_{1}}_{m_{1,1}} \\
m_{0} & :=\underbrace{a_{k}}_{m_{0, k}}+\underbrace{\beta_{1}^{1} b_{k-1}+\beta_{1}^{2} a_{k-1}}_{m_{0, k-1}}+\cdots+\underbrace{\beta_{1}^{2(k-1)-1} b_{1}+\beta_{1}^{2(k-1)} a_{1}}_{m_{0,1}}
\end{aligned}
$$

(Notation: $m_{i, k}$ denotes the partial-sum of m_{i} in the k-th epoch)

Step 1.1: $\mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \approx 0$, An overview

- Want To Show: $\mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \approx 0$
- Step 1-1 a): construct a simplified system by assuming x fixed
- Color-ball of the $\mathbf{1}^{\text {st }}$ kind: We further define the following quantities: (These mimic
gradient

$$
\begin{aligned}
& f_{1}=c_{1}(\underbrace{1+\beta_{1}}_{f_{1, k}}+\underbrace{\beta_{1}^{2}+\beta_{1}^{3}}_{f_{1, k-1}} \cdots+\underbrace{\beta_{1}^{2(k-1)}+\beta_{1}^{2(k-1)+1}}_{f_{1,1}}) \\
& f_{0}=c_{0}(\underbrace{1+\beta_{1}}_{f_{0, k}}+\underbrace{\beta_{1}^{2}+\beta_{1}^{3}}_{f_{0, k-1}} \cdots+\underbrace{\beta_{1}^{2(k-1)}+\beta_{1}^{2(k-1)+1}}_{f_{0,1}})
\end{aligned}
$$

Key finding:
No low-order terms!

Step 1.1: $\mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \approx 0$, An overview

Step 1: Take conditional expectation up to k-th epoch, calculate the partial sum $\mathbb{E}_{k}\left[\sum_{i}\left(m_{i, k}-f_{i, k}\right)\right]$: C_{0}
Order: $[0,1] \quad$ Order: $[1,0] \quad$ Sum of all possible $m_{1, k}+m_{0, k}$:

Step 2: We move one step further to calculate

$$
\mathbb{E}_{k-1} \mathbb{E}_{k}\left[\sum_{i}\left(m_{i, k}-f_{i, k}\right)+\left[\sum_{i}\left(m_{i, k-1}-f_{i, k-1}\right)\right]\right.
$$

Observe repeated cancelation! We observe that only the highest order term remains in the calculation! Repeat this process until $k=1$. We complete the proof of Lemma A. 1

Step 1.1: $\mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \approx 0$, continued

- What we did so far: Step 1-1 (a): assume x fixed, find certain property

Lemma A.1. In the color-ball model of the 1st kind, we have

$$
\mathbb{E}\left[\sum_{i=0}^{1} m_{i}-\sum_{i=0}^{1} f_{i}\right]=\beta_{1}^{2(k-1)+1}\left(-\frac{c_{0}}{2}-\frac{c_{1}}{2}\right)
$$

- Continue Step 1-1 (b): consider x changing

$$
\mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \xrightarrow{(1)(2)(3)} \mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \text { with "fixed x" } \xrightarrow{\text { Lemma A.1 }} O\left(\beta_{2}^{k}\right) \rightarrow 0
$$

: (1) Bounded Update Rule of Adam (2) diminishing stepsize (3) Lipschitz condition.
Combined we have $\left|g\left(x_{k}\right)-g\left(x_{k-1}\right)\right|=O(1 / \sqrt{ } k)$

Step 1.2: $\mathbb{E}\left(\frac{\nabla f_{k}}{\sqrt{v_{k}}}, m_{k}-\nabla f_{k}\right\rangle \approx 0$, an overview

- Recall our goal: $\mathbb{E}\left\langle\nabla f_{k}, \frac{m_{k}}{\sqrt{v_{k}}}\right\rangle>0$
- Simple decomposition: $\mathbb{E}\left\langle\nabla f_{k}, \frac{m_{k}}{\sqrt{v_{k}}}\right\rangle=\mathbb{E}\left\langle\nabla f_{k}, \frac{\nabla f_{k}}{\sqrt{v_{k}}}\right\rangle+\mathbb{E}\left\langle\nabla f_{k}, \frac{\nabla f_{k}}{\sqrt{v_{k}}}-\frac{m_{k}}{\sqrt{v_{k}}}\right\rangle$
- Recall In Step 1-1, we have shown: $\mathbb{E}\left(\nabla f\left(x_{k}\right)-m_{k}\right) \approx 0$
- Now In Step 1-2, We will show: $\mathbb{E}\left\langle\nabla f_{k}, \frac{g_{k}}{\sqrt{v_{k}}}-\frac{m_{k}}{\sqrt{v_{k}}}\right\rangle=\mathbb{E}\left\langle\frac{\nabla f_{k}}{\sqrt{v_{\mathrm{k}}}}, \mathrm{g}_{\mathrm{k}}-\mathrm{m}_{\mathrm{k}}\right\rangle \approx 0$
- Idea in Step 1-2: 1) control the movement of $\frac{\nabla f_{k}}{\sqrt{V_{\mathrm{k}}}}$

2) Extend the proof in Step 1-1

Step 1.2: $\mathbb{E}\left\langle\frac{\nabla f_{k}}{\sqrt{ } v_{k}}, m_{k}-\nabla f_{k}\right\rangle \approx 0$, an overview

- Want to show: $\mathbb{E}\left(\frac{\nabla f_{k}}{\sqrt{v_{k}}}, m_{k}-\nabla f_{k}\right\rangle \approx 0$ when β_{2} is large
- Step I: Show that $\left\|\frac{\nabla f_{k}}{\sqrt{v_{k}}}-\frac{\nabla f_{k-1}}{\sqrt{v_{k-1}}}\right\|=O\left(\frac{1}{\sqrt{k}}\right)$ when β_{2} is large (requires several technical lemmas, omitted here)
- Step II: we construct another color-ball model
- Color-ball of the $2^{\text {nd }}$ kind: Consider the same setting as the previous color ball. We further introduce a new seq of r.v. $\left\{r_{j}\right\}$ s.t. r_{j} is fixed when fixing the history up to j -th round and:

$$
\left|r_{j}-r_{j-1}\right|=\frac{1}{\sqrt{j}}, \quad j=1, \cdots k
$$

Now we define the following quantities:

$$
\begin{aligned}
& r_{k} m_{1}=r_{k}(\underbrace{b_{k}+\beta a_{k}}_{m_{1, k}}+\underbrace{\beta^{2} b_{k-1}+\beta^{3} a_{k-1}}_{m_{1, k-1}}+\cdots+\underbrace{\beta^{2(k-1)} b_{1}+\beta^{2(k-1)+1} a_{1}}_{m_{1,1}}) \\
& r_{k} m_{0}=r_{k}(\underbrace{a_{k}}_{m_{0, k}}+\underbrace{\beta^{1} b_{k-1}+\beta^{2} a_{k-1}}_{m_{0, k-1}}+\cdots+\underbrace{\beta^{2(k-1)-1} b_{1}+\beta^{2(k-1)} a_{1}}_{m_{1,1}})
\end{aligned}
$$

Step 1.2: $\mathbb{E}\left(\frac{\nabla f_{k}}{\sqrt{v_{k}}}, m_{k}-\nabla f_{k}\right\rangle \approx 0$, an overview

- Step II: we construct another color-ball model
- Color-ball of the $2^{\text {nd }}$ kind: Now we define the following quantities:

$$
\begin{aligned}
& r_{k} f_{1}=r_{k}(c_{1}(\underbrace{1+\beta_{1}}_{f_{1, k}}+\underbrace{\beta_{1}^{2}+\beta^{3}}_{f_{1, k-1}} \cdots+\underbrace{\beta_{1}^{2(k-1)}+\beta_{1}^{2(k-1)+1}}_{f_{1,1}})) \\
& r_{k} f_{0}=r_{k}(c_{0}(\underbrace{1+\beta_{1}}_{f_{0, k}}+\underbrace{\beta_{1}^{2}+\beta^{3}}_{f_{0, k-1}} \cdots+\underbrace{\beta_{1}^{2(k-1)}+\beta_{1}^{2(k-1)+1}}_{f_{0,1}}))
\end{aligned}
$$

Lemma A.2. Consider the color-ball model of the 2nd kind, we have

Step 1.2: $\mathbb{E}\left\langle\frac{\nabla f_{k}}{\sqrt{v_{k}}}, m_{k}-\nabla f_{k}\right\rangle \approx 0$, an overview

- We introduce 4 steps to prove Lemma A.2:
- Step 1: Take conditional exp and calculate $\mathbb{E}_{k}\left[r_{k} \sum_{i=0}^{1} m_{i, k}-r_{k} \sum_{i=0}^{1} f_{i}\right]$

Step 1.2: $\mathbb{E}\left\langle\frac{\nabla f_{k}}{\sqrt{v_{k}}}, m_{k}-\nabla f_{k}\right\rangle \approx 0$, an overview

- Step 2: change $\mathbb{E}_{k}\left[r_{k} \sum_{i=0}^{1} m_{i, k-1}\right]$ into $\mathbb{E}_{k}\left[r_{k-1} \sum_{i=0}^{1} m_{i, k-1}\right]+$ Error where Error $=O(1 / \sqrt{k})$
- Step 3: Take conditional exp : $\mathbb{E}_{k-1} \mathbb{E}_{k}\left\lceil r_{k-1} \sum_{i=0}^{1} m_{i, k-1}\right\rceil=\mathbb{E}_{k-1}\left\lceil r_{k-1} \sum_{i=0}^{1} m_{i, k-1}\right\rceil$
- Step 4: For the leftovers in Step 1: change all r_{k} into r_{k-1}

Repeat this process to the 1st epoch. Complete the proof of Lemma A. 2

Recap of the whole proof

Goal: want to prove: $\mathbb{E}\left\langle\nabla f\left(x_{k}\right), \frac{m_{k}}{\sqrt{v_{k}}}\right\rangle>$ constant $* \mathbb{E}\left\langle\nabla f\left(x_{k}\right), \nabla f\left(x_{k}\right)\right\rangle>0$

Preparation: $\mathbb{E}\left(m_{k}\right) \approx \mathbb{E}\left(\nabla f\left(x_{k}\right)\right)$

Step 1 (main part of the proof): $\mathbb{E}\left\langle\frac{\nabla f\left(x_{k}\right)}{\sqrt{ } v_{k}}, m_{k}\right\rangle \approx \mathbb{E}\left\langle\frac{\nabla f\left(x_{k}\right)}{\sqrt{ } v_{k}}, \nabla f\left(x_{k}\right)\right\rangle$

Step 2: $\mathbb{E}\left\langle\frac{\nabla f\left(x_{k}\right)}{\sqrt{v_{k}}}, \nabla f\left(x_{k}\right)\right\rangle \geq$ constant $* \mathbb{E}\left\langle\nabla f\left(x_{k}\right), \nabla f\left(x_{k}\right)\right\rangle>0$

Contents

1. Story of Adam
2. Main Results
3. Proof Ideas

4. Experiments and Summary

Our theory is consistent with experiments

Recipe for Adam hyperparameter-tuning

```
AdaShift? AdaBound? No need!
```


Adam with default setting $\left(\beta_{1}, \beta_{2}\right)=(0.9,0.999)$ works in your task, but want better performance

Summary: the behavior of Adam changes dramatically under different hyperparameters

When increasing β_{2} :
There is a phase transition from divergence to convergence.

Setting	Hyperparameters	Adam' s behavior
$\forall f(x)$ under $\mathbf{A} 1$ and $\mathbf{A} 2$ with $D_{0}=0$	β_{2} is large and $\beta_{1}<\sqrt{\beta_{2}}$	Converges to stationary points (Ours)
$\forall f(x)$ under $\mathbf{A 1}$ and $\mathbf{A} 2$ with $D_{0}>0$	β_{2} is large and $\beta_{1}<\sqrt{\beta_{2}}$	Converges to the neighborhood of stationary points (Ours)
$\exists f(x)$ under $\mathbf{A} 1$ and \mathbf{A} 2	β_{2} is small and a wide range of β_{1}	Diverges to infinity (Ours)

Our work is tweeted by Dr．Kingma（1st author of Adam）

Dr．Durk Kingma：inventor of Adam and VAE；co－founder of OpenAl；now a leader of Google Brain

Proves that（vanilla）Adam is theoretically justified without any modification．Presented at NeurIPS＇22．制熼准文

arxiv．org

Adam Can Converge Without Any Modification On Update ．．． Ever since Reddi et al． 2018 pointed out the divergence issue of Adam，many new variants have been designed to obtain ．．．

Durk Kingma＠dpkingma•12月3日
回复＠dpkingma
By Yushun Zhang，Congliang Chen，Naichen Shi，Ruoyu Sun，Zhi－Quan Luo．
Q 1
て】
$\bigcirc 5$
ث

Durk Kingma＠dpkingma•12月3日
Also provides suggestions for tuning hyperparameters beta1 and beta2．
Q 1
$\uparrow \downarrow$
○ 12
介

Durk Kingma＠dpkingma•12月3日
Author handles：
＠ericzhang0410
＠RuoyuSun＿UI
（Twitter，implement tweet edit fupationality please？ kthx ）

Kevin Patrick Murphy＠．．．• 2022／12／4
I＇ll need to add this ref to my book！

Mainly based on:

- Zhang, Chen, Shi, Sun, \& Luo, Adam can converge without any modification on update rules. NeurIPS 2022
- Thanks to all the collaborators!

Thank You!

