Towards Quantifying the Hessian Structure of Neural Networks

Yushun Zhang, June 27th, 2025

Presented at FAI Seminar

School of Data Science,

The Chinese University of Hong Kong, Shenzhen SRIBD

Overview of This Talk

- Part I: Empirical observations:
 - Hessian of NNs exhibit near-block-diagonal structure (e.g., Collobert 2004; Zhang et al. 2024 a,b; Kunstner et al. 2024)
 - But why? No theory so far

• Part II: Intuitions:

- Intuitions for linear NNs: a linear algebra perspective
- Intuition for non-linear NNs: linear algebra & probability perspective
- Part III: Our theoretical results & technical difficulties
 - By using random matrix theory (RMT), we rigorously prove the existence of special Hessian structure
 - Explain some challenges and why traditional RMT can NOT be directly applied in our case
- Part IV: Implications to LLMs

Contents

- Part I: Empirical observations
- Part II-1: Intuitions for linear NNs: a linear algebra perspective
- Part II-2: Intuition for non-linear NNs: linear algebra & probability perspective
- Part III: Our theoretical results & technical difficulties
- Part IV: Implications to LLMs

Hessian of NNs are numerically observed to be near-block-diagonal

(a) Hessian of an MLP[18] after 1 step

Hessian of an 1-hidden-layer NN

Figure from: Large Scale Machine Learning, Collobert, thesis, 2004

Hessian of NNs are numerically observed to be near-block-diagonal

Hessian of 1-hidden-layer NNs

Figure (b,c,d): Why Transformers Need Adam: A Hessian Perspective, Zhang, Chen, Ding, Li, Sun, Luo, NeurIPS 2024

Hessian of NNs are numerically observed to be near-block-diagonal

Hessian of Transformers Part I: Attention

Figure from: Adam-mini: Use Fewer Learning Rates To Gain More, Zhang, Chen, et al., ICLR 2025

Total Pages: 77

Hessian of NNs are numerically observed to be near-block-diagonal

Hessian of Transformers Part II: MLPs and embeddings

Figure from: Adam-mini: Use Fewer Learning Rates To Gain More, Zhang, Chen, et al., ICLR 2025

Total Pages: 77

Hessian of NNs are numerically observed to be near-block-diagonal

Figure 8: The diagonal Hessian blocks are orders of magnitude larger than off-diagonal blocks.

Hessian of a linear model + CE loss

Figure from: Heavy-Tailed Class Imbalance and Why Adam Outperforms GD on LLMs, Kunstner et al. NeurIPS 2024

Hessian of NNs are numerically observed to be near-block-diagonal

Hessian sub-blocks sampled from GPT2-125M (diag-blocks > 10^4 off-diag-blocks)

Figure from: Understanding Adam Requires Better Rotation Dependent Assumptions, Maes, et al., 2024 Total Pages: 77

Hessian of NNs are numerically observed to be near-block-diagonal

Approximated Hessian of 1 layer in Llama-7B & 32 layers in Llama-7B

Figure from: CBQ: Cross-Block Quantization for Large Language Models, Ding, et al., ICLR 2025

Motivation: Why Studying Hessian Structure?

- 1. Hessian structure is crucial for understanding NN training
 - The effectiveness of Adam (Zhang et al 24a, Kunstner et al. 24)
 - The effectiveness of general diagonal-preconditioned methods (Sun and Ye, 21, Qu et al. 22, Das et al. 24)
 - The effectiveness of recent block-diagonal-preconditioned methods (Shampoo, Muon)
- 2. Hessian structure can help design new training methods for NNs
 - Recently, Adam-mini utilizes the block-diag structure to cut down 50% memory in Adam
 - Low precision training (Ding et al. 2025)
 - More is coming..
- 3. Offering a new function class for optimization community
 - Typical problems do NOT have such structure: In classical non-linear programming dataset (Lavezzi et al 22), all problems have non-block-diag Hessian
 - Motivate new study into this specific class of problems

Today, we focus on...

- Why do Hessian matrices look like this? Is it trivial?
- What does one block correspond to?
- What is the fundamental reason for this structure?
 - Does it always hold for arbitrary NNs?
 - If not, is there common factor holds in all above, but we overlooked?
 - Is it a local property or global?
- Any more structure missed in the previous experiments?

Review: What is Hessian Matrix for NNs

Review: What is Hessian Matrix for NNs

Size of Hessian = (md + Cm) * (md + Cm)

$$W = \begin{bmatrix} \mathbf{w}_1^T \\ \vdots \\ \mathbf{w}_m^T \end{bmatrix} \in R^{m \times d}, V = \begin{bmatrix} \mathbf{v}_1^T \\ \vdots \\ \mathbf{v}_C^T \end{bmatrix} \in R^{C \times m}$$

$$H_{w_iw_i} = \frac{\partial^2 \mathcal{L}}{\partial w_i \partial w_i^T} \in R^{d \times d}$$
$$H_{w_iw_j} = \frac{\partial^2 \mathcal{L}}{\partial w_i \partial w_j^T} \in R^{d \times d}$$
$$H_{v_iv_i} = \frac{\partial^2 \mathcal{L}}{\partial v_i \partial v_i^T} \in R^{m \times m}$$
$$H_{v_iv_j} = \frac{\partial^2 \mathcal{L}}{\partial v_i \partial v_j^T} \in R^{m \times m}$$

$$H_{w_i v_i} = \frac{\partial^2 \mathcal{L}}{\partial w_i \partial v_i^T} \in R^{d \times m}$$
$$H_{w_i v_j} = \frac{\partial^2 \mathcal{L}}{\partial w_i \partial v_j^T} \in R^{d \times m}$$

Initial trial: binary classification

- Simple setting: Linear model + CE loss, binary classification
- Cannot see special Hessian structures. Why?

We find a phase transition as # class $C \rightarrow \infty$

• Simple setting: Linear model + CE loss, #C class classification

It seems that large #class C is important

Total Pages: 77

Empirical Observations: CIFAR-100

- Setup: CIFAR-100, sample size N = 128, input dim d = 32000, # classes C = 100
- 1-hidden-layer NN with 8 neurons, ReLU, random init
- We observe that Hessian is **near-block-diagonal.** Total # blocks = **# neuron + # class = 8 + 100 = 108**

Empirical Observations: Gaussian Data

- Setup: Standard Gaussian $X_N \in \mathbb{R}^{d \times N}$, random label in [C], N = 5000, d = 500, C = 500(we changed *d* and *C* to balance the proportion of Hww and Hvv)
- 1-hidden-layer NN with 8 neurons, random init. Total # blocks = # neuron + # class = 8 + 500 = 508

⁽f) Hessian at 100% steps

🕑 Why?

(i) block-circulant-block-diagonal structure at initialization
(ii) The block-circulant part vanishes along training
(iii) The near-block-diagonal pattern maintains along training

Empirical Observations: Gaussian Data

Hessian of a 2-layer relu NN, input dim = # classes = 500, width = 8, CE loss +Adam, Gaussian data + random label, sample size = 5000

[Click to play the video]

(i) block-circulant-block-diagonal structure at initialization
(ii) The block-circulant part vanishes along training
(iii) The near-block-diagonal pattern maintains along training

We reveal two forces that shape the Hessian structure:

(a) Hessian at initialization

(f) Hessian at 100% steps

Force I: a **``static force''** rooted in the architecture design (e.g., large # Class C); Force II: and a **``dynamic force''** arisen from training.

- In the following:
 - 1. We first provide intuitions on the structure
 - 2. a simple explanation on the ``dynamic force"
 - 3. rigorous theory on the ``static force'' at random initialization

Contents

- Part I: Empirical observations
- Part II-1: Intuitions for linear NNs: a linear algebra perspective
- Part II-2: Intuition for non-linear NNs: linear algebra & probability perspective
- Part III: Our theoretical results & technical difficulties
- Part IV: Implications to LLMs

- Let us start from the most simple NN:
- Example 1: Single-input-single-output (SISO):

 W_1 \mathcal{V}_1 Input data x = 1. No activation, label = 0, MSE loss: $\ell(w_1v_1) = \frac{1}{2}(w_1v_1)^2$ $\frac{\partial \ell}{\partial v_1} = w_1^2 v_1$ $\frac{\partial \ell}{\partial w_1} = w_1 v_1^2$ Gradient: **Observation: off-diagonal entries** are non-zero $\frac{\partial^2 \ell}{\partial v_1 \partial w_1} = 2w_1 v_1$ $\frac{\partial^2 \ell}{\partial w_1 \partial w_1} = v_1^2$ i.e., w1 and v1 has ``correlations" Hessian: Why? See from computation graph $\frac{\partial^2 \ell}{\partial v_1 \partial v_1} = w_1^2$ w1 and v1 are linked together $\frac{\partial^2 \ell}{\partial w_1 \partial v_1} = 2w_1 v_1$ Lesson: learn to check the link!

22

• Example 2-1: Single-input-multi-output (SIMO): (this is not a standard NN, but is good for understanding)

Input data x = 1. No activation, label = 0, MSE loss: $\ell(w_1, w_2, v_1, v_2) = \frac{1}{2}(w_1v_1)^2 + \frac{1}{2}(w_2v_2)^2$

Total Pages: 77

Gradient:
$$\frac{\partial \ell}{\partial w_1} = w_1 v_1^2$$

Hessian (1st row): $\frac{\partial^2 \ell}{\partial w_1 \partial w_1} = v_1^2$ $\frac{\partial^2 \ell}{\partial w_1 \partial w_2} = 0$ $\frac{\partial^2 \ell}{\partial w_1 \partial v_1} = 2w_1 v_1$ $\frac{\partial^2 \ell}{\partial w_1 \partial v_2} = 0$

We observer two zeros in the first-row of Hessian

Solution Why 0? Just check the links! E.g., no link between w_1 , v_{2^3}

• Example 2-1: Single-input-multi-output (SIMO): (this is not a standard NN, but is good for understanding)

This is a most simple block-circulant-block-diagonal matrix

check the links!

Observation:

 v_1

 $H_{i,j} \neq 0$ (*i and j* are connected in the graph (which means: *i and j* has **multiplicative relation**)

 $H_{i,j} = 0$ (*i and j* are not connected in the graph (which means: *i and j* has **no multiplicative relation**)

Hessian (1st row):

• Example 2-2: Single-input-multi-output (SIMO):

Denote $w = (w_1, w_2),$ $v_1 = (v_{1,1}, v_{1,2}),$ $v_2 = (v_{2,1}, v_{2,2})$

check the links!

Example 2-2: Single-input-multi-output (SIMO):

• Example 3: Multi-input-multi-output (SIMO):

Denote $W = \begin{bmatrix} w_1^T \\ w_2^T \end{bmatrix} \in R^{2 \times 2}, V = \begin{bmatrix} v_1^T \\ v_2^T \end{bmatrix} \in R^{2 \times 2}$ $w_1 = (w_{1,1}, w_{2,2}),$ $w_2 = (w_{2,1}, w_{2,2}),$ $v_1 = (v_{1,1}, v_{1,2}),$ $v_2 = (v_{2,1}, v_{2,2})$

 $\ell(W,V) = ||VW||_F^2$ (2-layer NN, X = Identity, Y = 0, no activation) $\ell(W,V) = \frac{1}{2}||v_1^TW||^2 + \frac{1}{2}||v_2^TW||^2 = \frac{1}{2}||v_{11}w_1 + v_{12}w_2||^2 + \frac{1}{2}||v_{21}w_1 + v_{22}w_2||^2$

• Example 3: Multi-input-multi-output (SIMO):

W_{2,1}

W22

30

 $\ell(W, V) = ||VW||_{F}^{2}$ (2-layer NN, X = Identity, Y = 0, no activation) $\ell(W, V) = \frac{1}{2}||v_{1}^{T}W||^{2} + \frac{1}{2}||v_{2}^{T}W||^{2} = \frac{1}{2}||v_{11}w_{1} + v_{12}w_{2}||^{2} + \frac{1}{2}||v_{21}w_{1} + v_{22}w_{2}||^{2}$ Hessian (1st block-row): $w_{1,1}$ $w_{1,2}$ $w_{1,2}$ $w_{1,2$

Remark: here, the white box might not be strictly zero due to the cross-term, but the signal would be rather weak (indirect multiplicative relation) Total Pages: 77

Remark: here, the white box might not be strictly zero due to the cross-term, but the signal would be rather weak (indirect multiplicative relation) Total Pages: 77 31

• The special Hessian structure (partly) stems from the definition of matrix product

$$f(v^{T}w) = f(v_{1} \cdot w_{1} + v_{2} \cdot w_{2}), \qquad w, v \in \mathbb{R}^{2}$$
Multiplicative relation
$$w_{1} \text{ and } v_{1} \text{ are connected in the graph}$$
non-zero Hessian entry

• The special Hessian structure (partly) stems from the definition of matrix product

• The special Hessian structure (partly) stems from the definition of matrix product

We now roughly understand the pattern, but not enough

Q: what about non-linearity? (relu + CE)

Q: Why does large C help?

Q: Why the circulant pattern disappear along training?

Q: Are the white box provably small?

A: Linear algebra might not be enough... Need helps from probability (next part)

Contents

- Part I: Empirical observations
- Part II-1: Intuitions for linear NNs: a linear algebra perspective
- Part II-2: Intuition for non-linear NNs: linear algebra & probability perspective
- Part III: Our theoretical results & technical difficulties
- Part IV: Implications to LLMs
Intuition from probability: the non-linear NNs

Previously, for linear NNs: we discussed why "block-circulant-block-diag structure exists" Now let's move to non-linear NNs (relu + CE loss)

We reveal two forces:

- Force I: a ``static force'' rooted in the architecture design;
- Force II: and a ``dynamic force'' arisen from training.

Let us start with the "dynamic force"

Training eliminates the block-circulant structure in H_{wv} . Why?

Intuition from probability: the "dynamic force"

$$\begin{split} \min_{W \in R^{m \times d}, V \in R^{m \times c}} \frac{1}{N} \sum_{n} \ell(f(x_{n}), y_{n}) &= \min_{W \in R^{m \times d}, V \in R^{m \times c}} \frac{1}{N} \sum_{n} -\log \frac{e^{\sigma(Wx_{n})^{T} v_{y_{n}}}}{\sum_{c} e^{\sigma(Wx_{n})^{T} v_{c}}} \\ & \frac{\partial \ell}{\partial w_{i}} = -\frac{1}{N} \sum_{n} \sum_{c} (\delta_{y_{n},c} - p_{n,c}) v_{c,i} \mathbb{I}(w_{i}^{T} x_{n} \ge 0) x_{n} \in R^{d} \\ H_{w_{i}v_{j}} &= \frac{\partial^{2} \ell}{\partial w_{i} \partial v_{j}^{T}} = \begin{bmatrix} 0 & \cdots & a_{i,1} & 0 & \cdots & 0\\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots\\ 0 & \cdots & a_{i,d} & 0 & \cdots & 0 \end{bmatrix} + O\left(\frac{1}{c}\right) \in R^{d \times m}, \quad \text{only the } i\text{-th column is non-zero} \\ & \text{ (if ignoring the } + O\left(\frac{1}{c}\right) \text{ noise)} \\ & \text{ where } a_{i,d'} &= -\frac{1}{N} \sum_{n} \sum_{c} (\delta_{y_{n},c} - p_{n,c}) v_{c,i} \mathbb{I}(w_{i}^{T} x_{n} \ge 0) x_{n,d'} \end{split}$$

- **Remark:** as training goes on, we have : $p_{n,c} \to 1$ for $c = y_n$ $p_{n,c} \to 0$ for $c \neq y_n$ Therefore, $(\delta_{y_n,c} - p_{n,c}) \to 0$ along training
- This can explain the ``dynamic force'': how the "block-circulant" pattern vanishes along training

Linear algebra & probability : the "dynamic force"

$$H_{w_{i}v_{j}} = \frac{\partial^{2}\ell}{\partial w_{i} \partial v_{j}^{T}} = \begin{bmatrix} 0 & \cdots & a_{i,1} & 0 & \cdots & 0\\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots\\ 0 & \cdots & a_{i,d} & 0 & \cdots & 0 \end{bmatrix} + O\left(\frac{1}{c}\right) \in R^{d \times m}, \text{ where } a_{i,d'} = -\frac{1}{N} \sum_{n} \sum_{c} (\delta_{y_{n},c} - p_{n,c}) v_{c,i} \mathbb{I}(w_{i}^{T}x_{n} \ge 0) x_{n,d'}$$

• Linear algebra perspective (like previous part): from computation graph, only $v_{1,i}, \dots, v_{C,i}$ are linked to w_i So only *i*-th column in $H_{w_iv_i}$ is non-zero

Linear algebra & probability : the "dynamic force"

Key take-away: $H_{wv} \approx O(optimality gap)$, which are expected to vanish (experiments: vanishes quickly as training begins)

What about the "static force"?

Case 1: linear model + MSE loss

$$\min_{V} \ell_{\text{MSE}}(V) := \frac{1}{N} \sum_{n=1}^{N} \|V x_n - \mathcal{Y}_n\|_2^2,$$

$$\begin{cases} \frac{\partial^2 \ell_{\text{MSE}}(V)}{\partial v_i \partial v_i^{\top}} = \frac{1}{N} \sum_{n=1}^N x_n x_n^{\top} & \text{for } i, j \in [C] \\ \frac{\partial^2 \ell_{\text{MSE}}(V)}{\partial v_i \partial v_j^{\top}} = 0_{d \times d}. \end{cases}$$

Hessian in Case 1 is trivially block diagonal We will not discuss this case in the sequel

Case 1: linear model + MSE loss

$$\min_{V} \ell_{MSE}(V) := \frac{1}{N} \sum_{n=1}^{N} ||Vx_n - \mathcal{Y}_n||_2^2,$$

Case 2: linear model + CE loss

$$\begin{split} \min_{V} \ell_{\text{CE}}(V) &:= -\frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{\exp(v_{y_n}^{\top} x_n)}{\sum_{c=1}^{C} \exp(v_c^{\top} x_n)} \right). \end{split}$$
Define $p_{n,i} := \exp(v_i^{\top} x_n) / \left(\sum_{c=1}^{C} \exp(v_c^{\top} x_n) \right).$ The Hessian matrix is, for $i, j \in [C]$.
$$\begin{cases} \frac{\partial^2 \ell_{\text{CE}}(V)}{\partial v_i \partial v_i^{\top}} &= \frac{1}{N} \sum_{n=1}^{N} p_{n,i} (1 - p_{n,i}) x_n x_n^{\top} \\ \frac{\partial^2 \ell_{\text{CE}}(V)}{\partial v_i \partial v_j^{\top}} &= -\frac{1}{N} \sum_{n=1}^{N} p_{n,i} p_{n,j} x_n x_n^{\top}. \end{split}$$

Intuitive understanding: at random initialization, suppose each entry in V follows i.i.d. zeromean Gaussian distribution, we have $p_{n,i} \approx \frac{1}{C}$ for all $n \in [N], i \in [C]$. As such:

$$\frac{\left\|\frac{\partial^{2}\ell_{\mathrm{CE}}(V)}{\partial v_{i}\partial v_{j}^{\top}}\right\|_{\mathrm{F}}}{\left\|\frac{\partial^{2}\ell_{\mathrm{CE}}(V)}{\partial v_{i}\partial v_{i}^{\top}}\right\|_{\mathrm{F}}} \approx \frac{\sum_{n=1}^{N} p_{n,i}p_{n,j}}{\sum_{n=1}^{N} p_{n,i}(1-p_{n,i})} \approx \frac{\frac{1}{C^{2}}}{\frac{1}{C}\left(1-\frac{1}{C}\right)} = \frac{1}{C-1},\tag{6}$$

which pushes the Hessian to become block-diagonal as $C \to \infty$.

This is why large # class C helps!

Case 2: linear model + CE loss

$$\min_{V} \ell_{\mathrm{CE}}(V) := -\frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{\exp(v_{y_n}^{\top} x_n)}{\sum_{c=1}^{C} \exp(v_c^{\top} x_n)} \right).$$

Define $p_{n,i} := \exp(v_i^{\top} x_n) / \left(\sum_{c=1}^{C} \exp(v_c^{\top} x_n) \right)$. The Hessian matrix is, for $i, j \in [C]$. $\begin{cases} \frac{\partial^2 \ell_{CE}(V)}{\partial v_i \partial v_i^{\top}} = \frac{1}{N} \sum_{n=1}^{N} p_{n,i} (1 - p_{n,i}) x_n x_n^{\top} \\ \frac{\partial^2 \ell_{CE}(V)}{\partial v_i \partial v_i^{\top}} = -\frac{1}{N} \sum_{n=1}^{N} p_{n,i} p_{n,j} x_n x_n^{\top}. \end{cases}$

Case 3: 1-hidden-layer-NN with *m* neurons + MSE loss

$$\min_{W,V} \ell_{\text{MSE}}(W,V) := \frac{1}{N} \sum_{n=1}^{N} \| V \sigma(Wx) - \mathcal{Y}_n \|_2^2,$$

The hidden-layer Hessian H_{ww} is: for $i, j \in [m]$,

$$\begin{cases} \frac{\partial^2 \ell_{\text{MSE}}(W,V)}{\partial w_i \partial w_i^{\top}} = \frac{1}{N} \left(\sum_{c=1}^C v_{c,i}^2 \right) \left(\sum_{n=1}^N \mathbf{1}(w_i^{\top} x_n > 0) x_n x_n^{\top} \right) \\ \frac{\partial^2 \ell_{\text{MSE}}(W,V)}{\partial w_i \partial w_j^{\top}} = \frac{1}{N} \left(\sum_{c=1}^C v_{c,i} v_{c,j} \right) \left(\sum_{n=1}^N \mathbf{1}(w_i^{\top} x_n > 0) \mathbf{1}(w_j^{\top} x_n > 0) x_n x_n^{\top} \right). \end{cases}$$

The output-layer Hessian H_{vv} is: for $i, j \in [C]$,

$$\left(\begin{array}{c} \frac{\partial^2 \ell_{\text{MSE}}(W,V)}{\partial v_i \partial v_i^{\top}} = \frac{1}{N} \sum_{n=1}^N \sigma(W x_n) \sigma(W x_n)^{\top} \\ \frac{\partial^2 \ell_{\text{MSE}}(W,V)}{\partial v_i \partial v_j^{\top}} = 0_{d \times d}, \end{array} \right.$$

Case 3: 1-hidden-layer-NN with m neurons + MSE loss

Intuitive understanding: at random initialization, suppose entries in $v_i \in \mathbb{R}^d$ follow an i.i.d. zero-mean Gaussian distribution, then

$$\frac{\left\|\frac{\partial^{2}\ell_{\text{MSE}}(W,V)}{\partial w_{i}\partial w_{j}^{\top}}\right\|_{\text{F}}}{\left\|\frac{\partial^{2}\ell_{\text{MSE}}(W,V)}{\partial w_{i}\partial w_{i}^{\top}}\right\|_{\text{F}}} \approx \frac{\left(\sum_{c=1}^{C} v_{c,i}v_{c,j}\right)}{\left(\sum_{c=1}^{C} v_{c,i}^{2}\right)} \stackrel{C \to \infty}{\Longrightarrow} \frac{\operatorname{Cov}(v_{i,i}, v_{i,j})}{\operatorname{Var}(v_{i,i})}.$$
(10)

Since $v_{i,i}, v_{i,j}$ are independent, $Cov(v_{i,i}, v_{i,j}) = 0$ and thus the block-diagonal structure occurs as $C \to \infty$.

This is why large # class C helps!

Case 3: 1-hidden-layer-NN with m neurons + MSE loss

Hidden-weight Hessian:

Output-weight Hessian:

Case 4: 1-hidden-layer-NN with *m* neurons + CE loss

$$\min_{W,V} \ell_{\mathrm{CE}}(W,V) := -\frac{1}{N} \sum_{n=1}^{N} \log \left(\frac{\exp(v_{y_n}^{\top} \sigma(Wx_n))}{\sum_{c=1}^{C} \exp(v_c^{\top} \sigma(Wx_n))} \right).$$

The Hessian matrix for the hidden weights is: for $i, j \in [m]$,

$$\begin{cases} \frac{\partial^2 \ell_{\text{CE}}(W,V)}{\partial w_i \partial w_i^{\top}} = \frac{1}{N} \sum_{n=1}^N \left(\sum_{c=1}^C p_{n,c} v_{c,i}^2 - \left(\sum_{c=1}^C p_{n,c} v_{c,i} \right)^2 \right) \mathbf{1}(w_i^{\top} x_n > 0) x_n x_n^{\top} \\ \frac{\partial^2 \ell_{\text{CE}}(W,V)}{\partial w_i \partial w_j^{\top}} = \frac{1}{N} \sum_{n=1}^N \left(\sum_{c=1}^C p_{n,c} v_{c,i} v_{c,j} - \left(\sum_{c=1}^C p_{n,c} v_{c,i} \right) \left(\sum_{c=1}^C p_{n,c} v_{c,j} \right) \right) \mathbf{1}(w_i^{\top} x_n > 0) \mathbf{1}(w_j^{\top} x_n > 0) x_n x_n^{\top} \end{cases}$$
(12)

The Hessian matrix for the output weights is: for $i, j \in [C]$,

$$\begin{cases} \frac{\partial^2 \ell_{\rm CE}(W,V)}{\partial v_i \partial v_i^{\top}} = \frac{1}{N} \sum_{n=1}^N p_{n,i} (1-p_{n,i}) \sigma(Wx_n) \sigma(Wx_n)^{\top} \\ \frac{\partial^2 \ell_{\rm CE}(W,V)}{\partial v_i \partial v_j^{\top}} = -\frac{1}{N} \sum_{n=1}^N p_{n,i} p_{n,j} \sigma(Wx_n) \sigma(Wx_n)^{\top}. \end{cases}$$
(13)

Case 4: 1-hidden-layer-NN with *m* neurons + CE loss

Intuitive understanding: at random initialization, suppose entries in W, V follows i.i.d. zeromean Gaussian distribution, we have $p_{n,i} \approx \frac{1}{C}$ for all $n \in [N], i \in [C]$. As such:

$$\frac{\left\|\frac{\partial^{2}\ell_{\mathrm{CE}}(W,V)}{\partial w_{i}\partial w_{j}^{\top}}\right\|_{\mathrm{F}}}{\left\|\frac{\partial^{2}\ell_{\mathrm{CE}}(W,V)}{\partial w_{i}\partial w_{i}^{\top}}\right\|_{\mathrm{F}}} \approx \frac{\left(\sum_{c=1}^{C} v_{c,i}v_{c,j} - \left(\sum_{c=1}^{C} v_{c,i}\right)\left(\sum_{c=1}^{C} v_{c,j}\right)\right)/C}{\left(\sum_{c=1}^{C} v_{c,i}^{2} - \left(\sum_{c=1}^{C} v_{c,i}\right)^{2}\right)/C} \stackrel{C \to \infty}{=} \frac{\operatorname{Cov}(v_{i,i}, v_{i,j})}{\operatorname{Var}(v_{i,i})}.$$
 (14)

Since $v_{i,i}, v_{i,j}$ are independent, $Cov(v_{i,i}, v_{i,j}) = 0$ and thus the block-diagonal structure occurs as $C \to \infty$. Similarly, we have

$$\frac{\left\|\frac{\partial^{2}\ell_{CE}(W,V)}{\partial v_{i}\partial v_{j}^{\top}}\right\|_{F}}{\left\|\frac{\partial^{2}\ell_{CE}(W,V)}{\partial v_{i}\partial v_{i}^{\top}}\right\|_{F}} \approx \frac{\sum_{n=1}^{N} p_{n,i}p_{n,j}}{\sum_{n=1}^{N} p_{n,i}(1-p_{n,i})} \approx \frac{\frac{1}{C^{2}}}{\frac{1}{C}\left(1-\frac{1}{C}\right)} = \frac{1}{C-1},$$
(15)

and thus the block-diagonal structure arises as $C \to \infty$.

This is why large # class C helps!

Case 4: 1-hidden-layer-NN with m neurons + CE loss

100 200 300 400 500 600 700

(e) *C* = 100

0.00005

0.00000

0 1000 2000 3000 4000 5000 6000 7000

(f) C = 1000

Hidden-weight Hessian:

Output-weight Hessian:

ò

0.0000

40 50

(d) C = 10

60 70

Ó 10 20 30 0.00

Summary: 3-level sources of block-diag structure

• Level 1: definition of matrix product: many zeros, no links

Summary: 3-level sources of block-diag structure

- Level 1: definition of matrix product: many zeros, no links
- Level 2: #Class C goes to infinity: weaken many links in H_{ww} , H_{vv}

	≈ 0	≈ 0	≈ 0		≈ 0		≈ 0
≈ 0		≈ 0	≈ 0		≈ 0		≈ 0
≈ 0	≈ 0		≈ 0	≈ 0		≈ 0	
≈ 0	≈ 0	≈ 0		≈ 0		≈ 0	
		≈ 0	≈ 0		≈ 0	0	0
≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	0	0 0
≈ 0	≈ 0	≈ 0 ≈ 0	≈ 0 ≈ 0	≈ 0 0	≈ 0 0	0	0 0 ≈ 0

Static force

Summary: 3-level sources of block-diag structure

- Level 1: definition of matrix product: many zeros, no links
- Level 2: #Class C goes to infinity: weaken many links in H_{ww} , H_{vv}
- Level 3: Training: eliminates strong links in H_{wv}

	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0
≈ 0		≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0
≈ 0	≈ 0		≈ 0	≈ 0	≈ 0	≈ 0	≈ 0
≈ 0	≈ 0	≈ 0		≈ 0	≈ 0	≈ 0	≈ 0
≈ 0	≈ 0	≈ 0	≈ 0		≈ 0	0	0
≈ 0 ≈ 0	≈ 0	≈ 0	0	0 0			
≈ 0 ≈ 0 ≈ 0	≈ 0 0	≈ 0 0	0	0 0 ≈ 0			

Dynamic force

- But how to prove rigorously?
- Need tools from

Random Matrix Theory (RMT)

Static force

Contents

Part I: Empirical observations

- Part II-1: Intuitions from linear algebra perspective
- Part II-2: Intuitions from statistics perspective
- Part III: Our theoretical results & technical difficulties
- Part IV: Implications to LLMs

Overview of our results

Settings: Consider general *C*-class classification problem: $(x_n, y_n)_{n=1}^N, x_n \in \mathbb{R}^d, y_n \in \{1, 2, \dots, C\}$

We prove the following results (informal): when $N, d \rightarrow \infty$ with $\frac{d}{N} = \gamma$, we have

- **Case 1** (linear model + MSE loss): For any *C*, Hessian is strictly block-diag with *C* blocks
- Case 2 (linear model + CE loss): Hessian approaches block-diag with C blocks with rate O(1/C)
- **Case 3** (1-hidden-layer-NN with *m* neurons + MSE loss):
 - Hessian of hidden weights approach block-diag with m blocks with rate $O(1/\sqrt{C})$
 - Hessian of output weights approach block-diag with C blocks with rate O(1/C)
- **Case 4** (1-hidden-layer-NN with *m* neurons + CE loss):
 - Hessian of hidden weights approach block-diag with m blocks with rate $O(1/\sqrt{C})$
 - Hessian of output weights approach block-diag with C blocks with rate O(1/C)

Main Results

Assumption 1 The entries of the data matrix $X_N = (x_1, \dots, x_N) \in \mathbb{R}^{d \times N}$ are *i.i.d.* $\mathcal{N}(0, 1)$.

Assumption 2 The model weights in W and V are initialized by LeCun initialization. That is: for the linear model, $V_{i,j} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \frac{1}{d})$, $i \in [C], j \in [d]$; for 1-hidden-layer network, $W_{i,j} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \frac{1}{d})$, $i \in [m], j \in [d], V_{i,j} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \frac{1}{m})$, $i \in [C], j \in [m]$.

Remark:

- Assumption 1 on data distribution is standard in random matrix theory (Pastur, 2020)
- It is possible to extend the Gaussian X_N to, e.g., Gaussian orthogonal ensembles and more general distribution
- However, such generalization is non-trivial and each case may require an independent paper (e.g. Pastur (2022); Pastur and Slavin (2023))

Main Results (Simplified)

Theorem 1 (Linear models.) Consider the Hessian expressions in (5) and assume Assumptions 1 and 2 hold. Suppose $d, N \to \infty, \frac{d}{N} \to \gamma \in (0, +\infty)$, then for fixed $C \ge 2$, it holds almost surely

$$\lim_{d,N\to\infty} \frac{\left\|\frac{\partial^2 \ell_{\mathrm{CE}}(V)}{\partial v_i \partial v_j^{\top}}\right\|_{\mathrm{F}}^2}{\left\|\frac{\partial^2 \ell_{\mathrm{CE}}(V)}{\partial v_i \partial v_i^{\top}}\right\|_{\mathrm{F}}^2} = \frac{g_{ij}(\gamma,C)}{g_{ii}(\gamma,C)}, \quad \lim_{C\to\infty} \frac{C^2 g_{ij}(\gamma,C)}{g_{ii}(\gamma,C)} = \frac{\gamma e^2 + 1}{\gamma e + 1}.$$
(20)

When $C \to \infty$, the ratio vanishes at the rate $\mathcal{O}(1/C^2)$, and the block-diagonal structure emerges.

RK: We actually calculate the close form of F-norm for each block, not just their ratio (omitted here for cleanness)

Key messages from Theorem 1: the block-diagonal structure arises when # classes $C \rightarrow \infty$

Main Results (Simplified)

Theorem 2 (1-hidden-layer networks.) Consider the Hessian expressions in (8) to (13), and assume Assumptions 1 and 2 hold. Then for any fixed $m \ge 3$, suppose $d, N \to \infty, \frac{d}{N} \to \gamma \in (0, +\infty)$, it holds that

$$\lim_{d,N\to\infty} \frac{\mathbf{E}\left[\left\|\frac{\partial^{2}\ell_{\mathrm{CE}}(W,V)}{\partial w_{i}\partial w_{j}^{\top}}\right\|_{\mathrm{F}}^{2}\right]}{\mathbf{E}\left[\left\|\frac{\partial^{2}\ell_{\mathrm{CE}}(W,V)}{\partial w_{i}\partial w_{i}^{\top}}\right\|_{\mathrm{F}}^{2}\right]}, \quad \lim_{d,N\to\infty} \frac{\mathbf{E}\left[\left\|\frac{\partial^{2}\ell_{\mathrm{MSE}}(W,V)}{\partial w_{i}\partial w_{j}^{\top}}\right\|_{\mathrm{F}}^{2}\right]}{\mathbf{E}\left[\left\|\frac{\partial^{2}\ell_{\mathrm{CE}}(W,V)}{\partial w_{i}\partial w_{i}^{\top}}\right\|_{\mathrm{F}}^{2}\right]}, \quad \lim_{d,N\to\infty} \frac{\mathbf{E}\left[\left\|\frac{\partial^{2}\ell_{\mathrm{CE}}(W,V)}{\partial v_{i}\partial v_{j}^{\top}}\right\|_{\mathrm{F}}^{2}\right]}{\mathbf{E}\left[\left\|\frac{\partial^{2}\ell_{\mathrm{MSE}}(W,V)}{\partial w_{i}\partial w_{i}^{\top}}\right\|_{\mathrm{F}}^{2}\right]}, \quad \frac{1}{2}\left[\left\|\frac{\partial^{2}\ell_{\mathrm{CE}}(W,V)}{\partial v_{i}\partial v_{i}^{\top}}\right\|_{\mathrm{F}}^{2}\right]}$$

$$(28)$$

vanish at the rate O(1/C), O(1/C), $O(1/C^2)$, respectively, and the block-diagonal structure also emerges as C increases.

RK: We actually calculate the close form of F-norm for each block, not just their ratio (omitted here for cleanness)

Key messages from Theorem 1 & 2: the block-diagonal structure arises when # classes $C \rightarrow \infty$

Roadmap for the Proof

- Part 3-1: Some basics of random matrix theory (RMT): useful for everyone
 - -- What is the goal of RMT?
 - -- How is RMT different from classical probability theory?
 - -- Introduction to Stieltjes Transform, Semicircular law, MP law
- Part 3-2: Hessian expressions and some challenges
 - -- why existing RMT tools cannot directly apply
- **Part 3-3:** Our new methods to overcome the challenges
 - -- based on some additional insights in Hessian of NNs
 - -- Our method implements the Lindeberg Principle, which originally proposed to prove CLT

What is the Goal of RMT?

- Goal: RMT studies limit eigenvalue distribution of a random Hermitian A (denoted as μ_A) as its size approaches ∞
- **Def:** we define the eigenvalue distribution of $A \in R^{d \times d}$ as the normalized counting measure of eigenvalues:

$$\mu_A = \frac{1}{d} \sum_j \delta_{\lambda_j(A)}$$

- A simple example:
 - -- What we know before

Let $A = \frac{1}{N} \sum_{n} x_n x_n^T \in \mathbb{R}^{d \times d}$, where $x_n \in \mathbb{R}^d$ are i.i.d. standard Gaussian

Then for fixed size d, let $N \to \infty$, $A \to I_{d \times d}$ (Law of Large Number)

In other words, $\mu_A \rightarrow \delta_1$

-- What we might not know before:

What if the size of A increase to ∞ ? RMT can answer this question: when $N, d \rightarrow \infty, N = \gamma d$,

then $\mu_A \rightarrow MP$ -law (γ)

Basic Question I: How to Define Convergence?

- Caveat: *A* is random, so λ_A is random, so μ_A is a random variable
- Comparison with classical probability:

Basic Question II: How to characterize a distribution?

• In Classical prob, we learned characteristic function (Fourier Transform)

$$\phi(t) = E(e^{itx}) = \int_R \exp^{itx} d\mu(x)$$

• Another one: Steiltjes Transform (S-Transform), which also uniquely determines a prob measure μ

$$S_{\mu}(z) = \int_{R} \frac{1}{x - z} d\mu(x), \forall z \in C^{+} \operatorname{supp}(\mu)$$

• RMT usually uses $S_{\mu}(z)$ to recover μ

Theorem (Inversion formula): For any $a < b \in R$ and any probability measure μ , we have

$$u([a,b]) = \lim_{\epsilon \to 0^+} \frac{1}{\pi} \int_a^b Im\left(s_\mu(t+i\,\epsilon)\right) dt$$

Basic Question II: How to characterize a distribution?

• $S_{\mu}(z)$ can also help us to extract the moments of μ

Proposition 1: for any probability measure μ , we have $S_{\mu}(z) = -\frac{1}{z} - \frac{m_1}{z^2} - \frac{m_2}{z^3} - \cdots, z \to \infty$, where $m_k = \int_R t^k \mu(t)$ is the *k*-th order moment of μ

Proof:

$$\frac{1}{t-z} = -\frac{1}{z} \left(\frac{1}{1-\frac{t}{z}} \right) = -\frac{1}{z} \left(\sum_{k=0}^{\infty} \frac{t^k}{z^k} \right) = -\sum_{k=0}^{\infty} \frac{t^k}{z^{k+1}}, \text{ when } z \text{ is sufficiently large}$$

$$S_{\mu}(z) = \int_{R} \frac{1}{x-z} d\mu(x) = -\sum_{k=0}^{\infty} \frac{\int_{R} t^{k} d\mu(t)}{z^{k+1}} = -\frac{1}{z} - \frac{m_{1}}{z^{2}} - \frac{m_{2}}{z^{3}} - \dots \text{ Q.E.D.}$$

In our context: $||A||_F^2 = 2nd - order moment$ of μ (sum-of-square eigenvalues)

Some Other Properties of Steiltjes Transform

Thm (Continuity theorem, deterministic version [1]): Let $\{\mu_n\}$ be a sequence of deterministic prob measures, then μ_n converges weakly to a prob measure μ_n if and only if

$$\lim_{n\to\infty}S_{\mu_n}(z)=S_{\mu}(z)$$

Thm (Continuity theorem, random version [1]): Let $\{\mu_n\}$ be a sequence of random prob measures, then μ_n converges weakly almost surely to a prob measure μ_n if and only if

$$\lim_{n\to\infty}S_{\mu_n}(z)=S_{\mu}(z)$$

Thm ([2]): for any sequence of Hermitian matrices $\{A_n \in C^{n \times n}\}$, we have

For any fixed
$$z \in C^+$$
, $S_{\mu_{A_n}}(z) - E S_{\mu_{A_n}}(z) \rightarrow a.s.$ as $n \rightarrow \infty$

Implications: to find μ , we just need to find $S_{\mu}(z)$ or E $S_{\mu}(z)$

[1]: Jeff Yao, et al., Large Sample Covariance Matrices and High Dimensional Data Analysis
[2]: Jeff Yao, Lecture notes on the Wigner Semicirclar Lawal Pages: 77

Summarize so far

- We have discussed:
- 1. the difference between RMT and classical probability
- 2. the notion of convergence
- 3. Steiltjes Transform and properties
- Now, how to find the limit μ_A of a sequence of growing random matrices $\{A_n\}$

Pipeline in RMT:

- Step 1: Given the expression of a random matrix A_n , try to find the limit $S_{\mu_A}(z)$ (abbreviation: $S_A(z)$) [This step is not easy! Usually worth a top statistic paper if you can find $S_A(z)$ for a new class of A_n (either in explicit form or implicit equations)]
- **Step 2:** Recover μ from $S_A(z)$

[This step largely based on experience. Has systematic strategies (e.g., Taylor expansion)]

- We now provide two classical examples
 - 1. Semicircular law on A = Wigner matrices
 - 2. M-P law on $A = XX^T$

Semicircular Law of Wigner Matrices

- **Def:** $A_n = (a_{i,j})_{1 \le i,j \le n}$ is called a Wigner Matrix if : 1. A_n is Hermitian
 - 2. $a_{i,i}$ are i.i.d. real r.v.s. with unit variance 3. $a_{i,i}$, i > j are i.i.d. complex r.v.s with zero mean and unit variance
- Thm (Semicircular law): Consider normalized Wigner matrices $\widetilde{A_n} = \frac{1}{\sqrt{n}} A_n$, then $\mu_{\widetilde{A_n}}$ converges weakly a.s. to Wigner semicircular distribution:

$$\mu_{SC} := \frac{1}{2\pi} \left(4 - |x|^2 \right)_+^{\frac{1}{2}} dx$$

• **Proof:** >5 pages, see [3], omitted here

[3]: Tao, Terence. Topics in random matrix theory

Semicircular Law of Wigner Matrices

Eigenvalue histogram of Wigner A_n , n = 1000, 1000 samples of A_n **Red curve:** density of Semicircular distribution

MP Law of Wigner Matrices

Thm (Marchenko–Pastur 1967): Let $X \in \mathbb{R}^{d \times n}$ whose entries are i.i.d. zero mean and variance $\sigma^2 < \infty$. Let $A_n = \frac{1}{n} XX^T \in \mathbb{R}^{d \times d}$. Assume $n, d \to \infty$ and $\frac{d}{n} = \lambda > 0$, then μ_{A_n} a.s. weakly converges to μ_{MP} , where for any subset Ω in \mathbb{R} , we have

$$\mu_{MP}(\Omega) = \begin{cases} \left(1 - \frac{1}{\lambda}\right) \ 1(0 \in \Omega) + \nu(\Omega), & \text{if } \lambda > 1\\ \nu(\Omega), & \text{if } 0 \le \lambda \le 1 \end{cases}$$

and

$$d
u(x)=rac{1}{2\pi\sigma^2}rac{\sqrt{(\lambda_+-x)(x-\lambda_-)}}{\lambda x}\, {f 1}_{x\in [\lambda_-,\lambda_+]}\, dx$$

with

$$\lambda_{\pm} = \sigma^2 (1 \pm \sqrt{\lambda})^2.$$

MP Law of Covariance Matrices

Eigenvalue histogram of $A_n = \frac{1}{n} XX^T \in \mathbb{R}^{d \times d}$, n = 50, d = 300, 1000 samples of A_n Yellow curve: density of MP distribution with d/ n = 50 / 300

Now, we are ready for our proof

- Now we discuss the technical challenges for the Hessian in Case 2 (linear model + CE loss)
- **Proof Procedure:**

1. Find diagonal block $\left|\left|\frac{\partial^2 \ell_{CE}(V)}{\partial v_i \partial v_i^T}\right|\right|_F$ and off-diagonal block $\left|\left|\frac{\partial^2 \ell_{CE}(V)}{\partial v_i \partial v_j^T}\right|\right|_F$ when $N, d \to \infty$

- 2. Compare their ratio
- We only discuss the diagonal blocks $\left|\left|\frac{\partial^2 \ell_{CE}(V)}{\partial v_i \partial v_i^T}\right|\right|_F$ here, off-diag blocks are proved in the same way

$$\frac{\partial^2 \ell_{\mathrm{CE}}(V)}{\partial v_i \partial v_i^{\top}} \stackrel{(5)}{=} \frac{1}{N} \sum_{n=1}^N p_{n,i} (1-p_{n,i}) x_n x_n^{\top} := \frac{1}{N} X_N \Lambda_N X_N^{\top} \in \mathbb{R}^{d \times d},$$

where $X_N = (x_1, \dots, x_N) \in \mathbb{R}^{d \times N}$, and $\Lambda_N = diag(p_{1i}(1 - p_{1i}), \dots, p_{Ni}(1 - p_{Ni})) \in \mathbb{R}^{N \times N}$, and $p_{n,i} = \frac{\exp(v_i^T x_n)}{\sum_{c=1} \exp(v_c^T x_n)}$

How to characterize $\left\|\frac{1}{N}X_N\Lambda_N X_N^T\right\|_F$?
Key Challenges in the Proof

Diagonal Hessian block:

$$\frac{\partial^2 \ell_{\mathrm{CE}}(V)}{\partial v_i \partial v_i^{\top}} \stackrel{(5)}{=} \frac{1}{N} \sum_{n=1}^N p_{n,i} (1-p_{n,i}) x_n x_n^{\top} := \frac{1}{N} X_N \Lambda_N X_N^{\top} \in \mathbb{R}^{d \times d},$$

Q: How to characterize the Hessian block $||\frac{1}{N}X_N\Lambda_N X_N^T||_F$?

We will use Random Matrix Theory (RMT), but classical methods cannot be directly applied:

• If X_N , Λ_N are independent, $||\frac{1}{N}X_N\Lambda_N X_N^T||_F$ can be found by **GMP Theorem (1967)**

7 7

- In our $\frac{1}{N}X_N\Lambda_N X_N^T$, X_N , Λ_N are clearly NOT independent, so MP theorem cannot be applied
- Dependent matrix product is a difficult topic in RMT

Exmple of GMP law: (Assume X and Λ are independent)

Eigenvalue histogram of $A_n = \frac{1}{n} X\Lambda X^T \in \mathbb{R}^{d \times d}$, $\Lambda = I$, n = 50, d = 300, 1000 samples of A_n Yellow curve: density of MP distribution with d/ n = 50 / 300

But wait... In our $\frac{1}{N}X_N\Lambda_N X_N^T$, X_N , Λ_N are clearly NOT independent, so MP theorem cannot be applied

- Dependent matrix product is a difficult topic in RMT
- Fortunately, we observe additional good properties in our $\frac{1}{N}X_N\Lambda_N X_N^T$

Key properties in our matrix

$$\frac{\partial^2 \ell_{\text{CE}}(V)}{\partial v_i \partial v_i^{\top}} \stackrel{\text{(5)}}{=} \frac{1}{N} \sum_{n=1}^N p_{n,i} (1 - p_{n,i}) x_n x_n^{\top} := \frac{1}{N} X_N \Lambda_N X_N^{\top} \in \mathbb{R}^{d \times d}, \quad \text{and} \; p_{n,i} = \frac{\exp(v_i^T x_n)}{\sum_{c=1} \exp(v_c^T x_n)}$$

Key observation: Λ_N and X_N are asymptotic independence

- Recall $v_i \sim \mathcal{N}(0, \frac{1}{d})$ and denote $z = v_i^\top x_n$, then $z | x \sim \mathcal{N}(0, \frac{\|x\|_2^2}{d})$. Further, since $x \sim \mathcal{N}(0, 1)$, we have $\frac{\|x\|_2^2}{d} \sim \mathcal{X}^2(1, \frac{2}{d})$, which concentrates to 1 as $d \to \infty$.
- As such, *z* asymptotically follows $\mathcal{N}(0,1)$ and thus is independent of *x*. Therefore, Λ_N and X_N are asymptotically independent.
 - **Guess:** limiting eigenvalue $X_N \Lambda_N X_N^T \approx$ those as if X_N , Λ_N are independent
 - The remaining question is how to prove it rigorously.

Our Proof Strategies

- We propose a systematic proof procedure to address the "diminishing dependencies as $d \to \infty$ "
- Our approach implements **the Lindeberg interpolation principle** which is originally proposed to prove CLT

Preparation: "decoupling": we introduce the following decoupling matrix

$$\widetilde{H}_{ii}^{\text{CE}} = \frac{1}{N} \sum_{n=1}^{N} \widetilde{p}_{n,i} (1 - \widetilde{p}_{n,i}) x_n x_n^{\top}, \quad \widetilde{p}_{n,i} := \frac{\exp(v_i^{\top} \widetilde{x}_n)}{\sum_{c=1}^{C} \exp(v_c^{\top} \widetilde{x}_n)}, \quad (32)$$

where $\widetilde{X}_N = (\widetilde{x}_1, \cdots, \widetilde{x}_N) \in \mathbb{R}^{d \times n}$ is an independent copy of X_N .

Goal of decouple:

Now we want to prove:

• **Claim 1:**
$$\widetilde{H_{ii}^{CE}} = \frac{1}{N} X_N \widetilde{\Lambda_N} X_N^T$$
 and $H_{ii}^{CE} = \frac{1}{N} X_N \Lambda_N X_N^T$ share the same limit eigenvalue distribution

- If so, then we can apply GMP to $\widetilde{H_{ii}^{CE}}$
- Now we prove Claim 1

Our Proof Strategies (Overview)

Key challenge: Need $||\frac{1}{N}X_N\Lambda_N X_N^T||_F$, But X_N and Λ_N are dependent

Our solution: a new method built upon **the Lindeberg principle** (originally proposed to prove CLT)

Step 1 (Important): "indept. copy \tilde{X}_N **+ interpolation":** we introduce the following $X_N(t)$

 $X_N(t) = \sqrt{t} X_N + \sqrt{1-t} \widetilde{X_N}, t \in [0,1]$. Note that $X_N(0) = X_N, X_N(1) = \widetilde{X_N}$

Goal: Wish to show that: for any $z \in C^+$, $\delta_N(z) = Es_{H_{ii}}(z) - Es_{H_{ii}}(z)$ vanishes as N increases

Our "decouple" Strategy: Step 2 (Important): Fundamental theorem of calculus

$$\delta_N(z) = \int_0^z E\left[\frac{d}{dt} s_{H_{ii}(t)}\right] dt$$

Step 3 (Important): Using Cauchy Integral Formular, we prove that $\delta_N(z) \leq Const. E[Z_1 f(Z_1) - Z_2 f(Z_2)]$, where $Z_i \sim N(0,1)$

Step 4 (Important): Using Stein's Lemma, we prove that:

$$E[Z_1 f(Z_1) - Z_2 f(Z_2)] = E[f'(Z_1) - f'(Z_2)] = O(\frac{1}{\sqrt{N}})$$

Step 5 (Standard): Apply GMP to recover $S_{\widetilde{H_{ii}}}(z)$, $\mu_{\widetilde{H_{ii}}}$, and $\mu_{H_{ii}}$

RK: This step will fail if no asymptotic independence

The Effect of Increasing C

These quantities match our theoretical prediction

The Effect of Increasing # classes C

- The Hessian blocks of 1-hidden-laye NN with 8 hidden neurons + #class C at random init.
- The block-diag structure becomes clearer as C increases

Total Pages: 77

Summary

- We discussed the intuition behind the special structure of Hessian
 - linear algebra and & probability perspective
- We rigorously prove using random matrix theory
 - Key factor: # classes $c \rightarrow \infty$
- Technical challenges: non-independent random matrix products XΛX^T
 - Our solution: a new method based on the Linderberg Principle

Summary: 3-level sources of block-diag structure

• Level 1: definition of matrix product: many zeros, no links

Summary: 3-level sources of block-diag structure

- Level 1: definition of matrix product: many zeros, no links
- Level 2: #Class C goes to infinity: weaken many links in H_{ww} , H_{vv}

	≈ 0	≈ 0	≈ 0		≈ 0		≈ 0
≈ 0		≈ 0	≈ 0		≈ 0		≈ 0
≈ 0	≈ 0		≈ 0	≈ 0		≈ 0	
≈ 0	≈ 0	≈ 0		≈ 0		≈ 0	
		≈ 0	≈ 0		≈ 0	0	0
≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	0	0
≈ 0	≈ 0	≈ 0 ≈ 0	≈ 0 ≈ 0	≈ 0 0	≈ 0 0	0	0 0 ≈ 0

Static force

Summary: 3-level sources of block-diag structure

- Level 1: definition of matrix product: many zeros, no links
- Level 2: #Class C goes to infinity: weaken many links in H_{ww} , H_{vv}
- Level 3: Training: eliminates strong links in H_{wv}

Dynamic force

	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0
≈ 0		≈ 0	≈ 0	≈ 0	≈ 0	≈ 0	≈ 0
≈ 0	≈ 0		≈ 0	≈ 0	≈ 0	≈ 0	≈ 0
≈ 0	≈ 0	≈ 0		≈ 0	≈ 0	≈ 0	≈ 0
≈ 0	≈ 0	≈ 0	~ 0		~ 0	0	0
	~ 0	~ 0	~ 0		~ 0	U	U
° ≈ 0	~ 0 ≈ 0	~ 0 ≈ 0	~ 0 ≈ 0	≈ 0	~ 0	0	0
≈ 0 ≈ 0	≈ 0 ≈ 0 ≈ 0	≈ 0 ≈ 0 ≈ 0	≈ 0 ≈ 0 ≈ 0	≈ 0 0	~ 0	0	0 ≈ 0

Static force

Guess: Hessian for Deep NNs?

Guess: Hessian for Deep NNs?

For a rough estimate: just check the links in the computational graph

Numerical result: Does it match your estimation? Hessian of a **2-layer** relu NN, input dim = # classes = 500, width = 8, CE loss +Adam, Gaussian data + random label, sample size = 5000

Hessian of a **4-layer** relu NN, input dim = # classes = width = 50, CE loss + Adam, Gaussian data + random label, sample size = 500

Contents

Part I: Empirical observations

- Part II-1: Intuitions from linear algebra perspective
- Part II-2: Intuitions from statistics perspective
- Part III: Our theoretical results & technical difficulties
- Part IV: Implications to LLMs

What about the Hessian of Transformers?

Implication I: Why Transformers Need Adam

Blockwise Hessian spectrum

[1] Why Transformers Need Adam: A Hessian Perspective. Zhang, Chen, Ding, Li, Sun, Luo, NeurIPS 2024,

Total Pages: 77

Implication I: Why Transformers Need Adam

Figure 4: The JS distance among blockwise Hessian spectra for different models at initialization.

Observation 1: Heterogeneity is widely observed in Transformers, but not on CNNs!

Total page: 58

[1] Why Transformers Need Adam: A Hessian Perspective. Zhang, Chen, Ding, Li, Sun, Luo, NeurIPS 2024, Total Pages: 77

37

When and Why Adam >> SGD? Hessian Structure Might Help

Hessian of NN has very special Structure

- Proved in [1]
- Why? large # output dim + training

CNN: blockwise spectrum is observed to be similar [2]

- No proof now
- **SGD** \approx Adam

Transformer: blockwise spectrum is observed to be heterogeneous [2]
Later proved in [3]. Why? Softmax is the one to blame

SGD « Adam

Balanced label: blockwise spectrum of lm_head is observed to be similar [4]
Preliminary explanation in [4]

SGD \approx Adam

Imbalanced label: blockwise spectrum of lm_head is observed to be **heterogeneous** [4]

- Preliminary explanation in [4]
- SGD «Adam

[1] Towards Quantifying the Hessian Structure of Neural Networks.

[2] Why Transformers Need Adam: A Hessian Perspective

[3] What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis

[4] Heavy-Tailed Class Imbalance and Why Adam Outperforms Gradient Descent on LLMs

Implication II: New algorithm Adam-mini

Chinchilla Scaling laws of Adam-mini: same performance as AdamW, but with 50% less memory

[2] Adam-mini: Use Fewer Learning Rates To Gain More, **Zhang**, Chen, et al., ICLR 2025

Total Pages: 77

LLama3-8B Pretrain: Independent verifier from PyTorch team

Highlight:

"This is imo a very big accomplishment as most optimizers can't do this (meet / exceed adamw) at 8B

... and especially not while reducing memory so significantly" Total Pages: 77

Acknowledgements from the Authors of Adam

- Photo shot at ICLR 2025 Test of Time Speech by Dr. Durk Kingma and Prof. Jimmy Ba
- "This work allows you to reduce the memory of Adam by a large factor ...

This is, I think, a great result that argued from theory "

Implication III: Shampoo & Muon

Our theory can support Shampoo (and Muon)

Implication IV: New algorithm ASGO

ASGO: Adaptive Structured Gradient Optimization

Kang An¹^{*}, Yuxing Liu²^{*}, Rui Pan², Shiqian Ma¹, Donald Goldfarb³, Tong Zhang²

¹Rice University ²University of Illinois Urbana-Champaign ³Columbia University {kang.an,shiqian.ma}@rice.edu, {yuxing6,ruip4,tozhang}@illinois.edu, goldfarb@columbia.edu

True Hessian (Supported by our theory)

Implication IV: New algorithm ASGO

Total Pages: 77

Implication V: block-wise learning rate

The Sharpness Disparity Principle in Transformers for Accelerating Language Model Pre-Training

Jinbo Wang^{*1} Mingze Wang^{*1} Zhanpeng Zhou^{*2} Junchi Yan² Weinan E¹³⁴ Lei Wu¹³⁴

Mainly based on:

- Zhang, Chen, Ding, Li, Sun, & Luo; Why Transformers Need Adam: A Hessian Perspective, NeurIPS 2024
- Zhang, Chen, Li, Ding, Wu, Kingma, Ye, Luo & Sun; Adam-mini: Use Fewer Learning Rate To Gain More, ICLR 2025
- Dong*, Zhang* (Alphabetically ordered), Luo, Yao, Sun; Towards Quantifying the Hessian Structure of Neural Networks, Preprint
- Thanks to all the collaborators!

How to Use Adam-mini? Just 1-line code change

Code: https://github.com/zyushun/Adam-mini

- Code for Adam-mini Currently:
 - -- 400+ stars
 - -- 2000+ download via pip install (in the last two weeks)

Hessian and classical ideas are still powerful!

Thanks for listening!

