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Overview of This Talk
• Part I: Empirical observations: 

• Hessian of NNs exhibit near-block-diagonal structure 
(e.g., Collobert 2004; Zhang et al. 2024 a,b; Kunstner et al. 2024)

• But why? No theory so far

• Part II: Intuitions:
• Intuitions for linear NNs: a linear algebra perspective
• Intuition for non-linear NNs: linear algebra & probability perspective

• Part III: Our theoretical results & technical difficulties 
• By using random matrix theory (RMT), we rigorously prove the existence of  special Hessian structure 
• Explain some challenges and why traditional RMT can NOT be directly applied in our case

• Part IV: Implications to LLMs
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Empirical Observations
• Hessian of NNs are numerically observed to be near-block-diagonal
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Figure from: Large Scale Machine Learning, Collobert, thesis, 2004

Hessian of an 1-hidden-layer NN



Empirical Observations
• Hessian of NNs are numerically observed to be near-block-diagonal
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Figure (b,c,d): Why Transformers Need Adam: A Hessian Perspective, Zhang, Chen, Ding, Li, Sun, Luo, NeurIPS 2024  

Hessian of 1-hidden-layer NNs



Empirical Observations
• Hessian of NNs are numerically observed to be near-block-diagonal
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Figure from: Adam-mini: Use Fewer Learning Rates To Gain More, Zhang, Chen, et al., ICLR 2025

Hessian of Transformers Part I: Attention



Empirical Observations
• Hessian of NNs are numerically observed to be near-block-diagonal

Total Pages: 77 7

Figure from: Adam-mini: Use Fewer Learning Rates To Gain More, Zhang, Chen, et al., ICLR 2025

Hessian of Transformers Part II: MLPs and embeddings



Empirical Observations
• Hessian of NNs are numerically observed to be near-block-diagonal
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Figure from: Heavy-Tailed Class Imbalance and Why Adam Outperforms GD on LLMs, Kunstner et al. NeurIPS 2024 

Hessian of a linear model  + CE loss



Empirical Observations
• Hessian of NNs are numerically observed to be near-block-diagonal
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Figure from: Understanding Adam Requires Better Rotation Dependent Assumptions, Maes, et al., 2024

Hessian sub-blocks sampled from GPT2-125M 
(diag-blocks > 10^4 off-diag-blocks)

Embedding layer Value MLPQuery



Empirical Observations
• Hessian of NNs are numerically observed to be near-block-diagonal
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Figure from: CBQ: Cross-Block Quantization for Large Language Models, Ding, et al., ICLR 2025

Approximated Hessian of 1 layer in Llama-7B & 32 layers in Llama-7B



Motivation: Why Studying Hessian Structure?

• 1. Hessian structure is crucial for understanding NN training
• The effectiveness of Adam 

(Zhang et al 24a, Kunstner et al. 24)
• The effectiveness of general diagonal-preconditioned methods

(Sun and Ye, 21, Qu et al. 22, Das et al. 24)
• The effectiveness of recent block-diagonal-preconditioned methods

(Shampoo, Muon)

• 2. Hessian structure can help design new training methods for NNs
• Recently, Adam-mini utilizes the block-diag structure to cut down 50% memory in Adam
• Low precision training (Ding et al. 2025)
• More is coming..

• 3. Offering a new function class for optimization community
• Typical problems do NOT have such structure:

In classical non-linear programming dataset (Lavezzi et al 22), all problems have non-block-diag Hessian
• Motivate new study into this specific class of problems
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Today, we focus on…

• Why do Hessian matrices look like this? Is it trivial?

• What does one block correspond to? 

• What is the fundamental reason for this structure? 
- Does it always hold for arbitrary NNs?
- If not, is there common factor holds in all above, but we overlooked?
- Is it a local property or global?

• Any more structure missed in the previous experiments? 
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Review: What is Hessian Matrix for NNs
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Review: What is Hessian Matrix for NNs



Initial trial: binary classification
• Simple setting: Linear model + CE loss, binary classification
• Cannot see special Hessian structures. Why?
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We find a phase transition as # class C → ∞
• Simple setting: Linear model + CE loss, #C class classification
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C = 2 C = 10 C = 100

🤔 It seems that large #class C is important



Empirical Observations: CIFAR-100
• Setup: CIFAR-100, sample size 𝑁 = 128, input dim 𝑑 = 32000, # classes 𝐶 = 100

• 1-hidden-layer NN with 8 neurons, ReLU, random init
• We observe that Hessian is near-block-diagonal. Total # blocks = # neuron + # class = 8 + 100 = 108
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🤔
But the hidden & output layer 
proportion is too imbalanced

Did we miss anything in the cross-layer part?

🤔
It seems that large #class C is important
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(i) block-circulant-block-diagonal structure at initialization  
(ii) The block-circulant part vanishes along training
(iii) The near-block-diagonal pattern maintains along training
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Empirical Observations: Gaussian Data
• Setup: Standard Gaussian 𝑋# ∈ 𝑅!×#, random label in [𝐶] , 𝑁 = 5000, 𝑑 = 500, 𝐶 = 500

(we changed 𝑑 and 𝐶 to balance the proportion of Hww and Hvv)

• 1-hidden-layer NN with 8 neurons, random init. Total # blocks = # neuron + # class = 8 + 500 = 508

🤔Why?
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(i) block-circulant-block-diagonal structure at initialization  
(ii) The block-circulant part vanishes along training
(iii) The near-block-diagonal pattern maintains along trainingTotal Pages: 77

Empirical Observations: Gaussian Data

🤔Why?

[Click to play the video]



We reveal two forces that shape the Hessian structure:  

• In the following:
• 1. We first provide intuitions on the structure
• 2. a simple explanation on the ``dynamic force’’
• 3. rigorous theory on the ``static force'' at random initialization
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Force I: a ``static force'' rooted in the architecture design (e.g., large # Class C);
Force II: and a ``dynamic force'' arisen from training. 
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Intuition: Example 1
• Let us start from the most simple NN: 
• Example 1: Single-input-single-output (SISO):
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𝑤A 𝑣A
Input data x = 1. No activation, label = 0, MSE loss:  ℓ 𝑤A𝑣A = A

B
𝑤A𝑣A B

C!ℓ
CD"CD"

= 𝑣AB

C!ℓ
CD"CE"

= 2𝑤A𝑣A

𝜕!ℓ
𝜕𝑣"𝜕𝑤"

= 2𝑤"𝑣"

𝜕!ℓ
𝜕𝑣"𝜕𝑣"

= 𝑤"!

Cℓ
CD"

= 𝑤A𝑣ABGradient: 

Hessian: 

Cℓ
CE"

= 𝑤AB𝑣A
Observation: off-diagonal entries 
are non-zero

i.e., w1 and v1 has ``correlations”

Why? See from computation graph
w1 and v1 are linked together

Lesson: learn to check the link!



Intuition: Example 2-1
• Example 2-1: Single-input-multi-output (SIMO):

(this is not a standard NN, but is good for understanding)
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𝑤A 𝑣A

𝑤B 𝑣B
Input data x = 1. No activation, label = 0, MSE loss:  ℓ 𝑤A, 𝑤B, 𝑣A, 𝑣B = A

B 𝑤A𝑣A B + A
B 𝑤B𝑣B B

Cℓ
CD"

= 𝑤A𝑣ABGradient: 

C!ℓ
CD"CD"

= 𝑣AB
𝜕!ℓ

𝜕𝑤"𝜕𝑤!
= 0Hessian (1st row): 

𝜕!ℓ
𝜕𝑤"𝜕𝑣"

= 2𝑤"𝑣"
𝜕!ℓ

𝜕𝑤"𝜕𝑣!
= 0

We observer two zeros in the first-row of Hessian 🤔Why 0? Just check the links!
E.g., no link between 𝒘𝟏, 𝒗𝟐Total Pages: 77



Intuition: Example 2-1
• Example 2-1: Single-input-multi-output (SIMO):

(this is not a standard NN, but is good for understanding)
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𝑤A 𝑣A

𝑤B 𝑣B
Input data x = 1. No activation, label = 0, MSE loss:  ℓ 𝑤", 𝑤!, 𝑣", 𝑣! = "

!
𝑤"𝑣" ! + "

!
𝑤!𝑣! !

Hessian:

This is a most simple block-circulant-block-diagonal matrix0 0

0 0

0 0

0 0

𝑤!

𝑤"

𝑣!

𝑣"

𝑤! 𝑤" 𝑣! 𝑣"

Observation: 
𝐻3,4 ≠ 0 𝑖 𝑎𝑛𝑑 𝑗 are connected in the graph
(which means:  𝑖 𝑎𝑛𝑑 𝑗 has multiplicative relation)

𝐻3,4 = 0 𝑖 𝑎𝑛𝑑 𝑗 are not connected in the graph
(which means:  𝑖 𝑎𝑛𝑑 𝑗 has no multiplicative relation)

check the links!



Intuition: Example 2-2
• Example 2-2: Single-input-multi-output (SIMO):

𝑤A 𝑣A,A

𝑤B
𝑣B,B

𝑣A,B𝑣B,A
Denote 𝑤 = (𝑤", 𝑤!), 

𝑣" = 𝑣",", 𝑣",! ,
𝑣! = (𝑣!,", 𝑣!,!)

ℓ 𝑤, 𝑣A, 𝑣B =
1
2
𝑣AL𝑤 B +

1
2
𝑣BL𝑤 B =

1
2
𝑣A,A𝑤A + 𝑣A,B𝑤B

B +
1
2
𝑣B,A𝑤A + 𝑣B,B𝑤B

B

Hessian (1st row): 𝑤!

𝑤! 𝑤" 𝑣!,! 𝑣!," 𝑣",! 𝑣","

check the links!
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Intuition: Example 2-2
• Example 2-2: Single-input-multi-output (SIMO):

𝑤A 𝑣A,A

𝑤B
𝑣B,B

𝑣A,B𝑣B,A
Denote 𝑤 = (𝑤", 𝑤!), 

𝑣" = 𝑣",", 𝑣",! ,
𝑣! = (𝑣!,", 𝑣!,!)

ℓ 𝑤, 𝑣A, 𝑣B =
1
2
𝑣AL𝑤 B +

1
2
𝑣BL𝑤 B =

1
2
𝑣A,A𝑤A + 𝑣A,B𝑤B

B +
1
2
𝑣B,A𝑤A + 𝑣B,B𝑤B

B

Hessian (1st row): 𝑤!

𝑤! 𝑤" 𝑣!,! 𝑣!," 𝑣",! 𝑣","

Remark:  The white box might not be 0 due to the cross-term, 
Need more detailed calculation, but usually the signal can be rather weak
(due to indirect muliplicative relation)

check the links!
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Intuition: Example 2-2
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Hessian:

𝑤!

𝑤"

𝑣!,!

𝑣!,"

𝑤! 𝑤" 𝑣!,! 𝑣!,"

ℓ 𝑤, 𝑣A, 𝑣B =
1
2
𝑣A,A𝑤A + 𝑣A,B𝑤B

B
+
1
2
𝑣B,A𝑤A + 𝑣B,B𝑤B

B

𝑣",! 𝑣","

What about here?
Just follow the same logic

𝑣",!

𝑣","

check the links!



Intuition: Example 2-2
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Hessian:
0 0

0 0

0 0

0 0

𝑤!

𝑤"

𝑤! 𝑤" 𝑣!,! 𝑣!," 𝑣",! 𝑣","

ℓ 𝑤, 𝑣A, 𝑣B =
1
2
𝑣AL𝑤 B +

1
2
𝑣BL𝑤 B =

1
2
𝑣A,A𝑤A + 𝑣A,B𝑤B

B
+
1
2
𝑣B,A𝑤A + 𝑣B,B𝑤B

B

No correlation between 𝑣A and 𝑣B
(Check the graph: 
NO link between them!)

𝑣!,!

𝑣!,"

𝑣",!

𝑣","



Intuition: Example 3
• Example 3: Multi-input-multi-output (SIMO):

𝑤A,A 𝑣A,A

𝑤B,B
𝑣B,B

𝑣A,B𝑣B,A

Denote 𝑊 =
𝑤"$

𝑤!$
∈ 𝑅!×!, 𝑉 =

𝑣"$

𝑣!$
∈ 𝑅!×!

𝑤" = (𝑤"," , 𝑤!,! ),
𝑤! = (𝑤!," , 𝑤!,! ),
𝑣" = 𝑣",", 𝑣",! ,
𝑣! = (𝑣!,", 𝑣!,!)

ℓ 𝑊, 𝑉 = ||𝑉𝑊||MB

ℓ 𝑊, 𝑉 =
1
2
||𝑣AL𝑊||B +

1
2
||𝑣BL𝑊||B =

1
2
||𝑣AA𝑤A + 𝑣AB𝑤B||B +

1
2
||𝑣BA𝑤A + 𝑣BB𝑤B||B

Hessian (1st block-row): 𝑤!,!

𝑤!,! 𝑤!," 𝑣!,! 𝑣!," 𝑣",! 𝑣","

𝑤A,B
𝑤B,A

(2-layer NN, X = Identity, Y = 0, no activation)

𝑤!,"

𝑤",! 𝑤","
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Intuition: Example 3 
• Example 3: Multi-input-multi-output (SIMO):

𝑤A,A 𝑣A,A

𝑤B,B
𝑣B,B

𝑣A,B𝑣B,A

Denote 𝑊 =
𝑤"$

𝑤!$
∈ 𝑅!×!, 𝑉 =

𝑣"$

𝑣!$
∈ 𝑅!×!

𝑤" = (𝑤"," , 𝑤!,! ),
𝑤! = (𝑤!," , 𝑤!,! ),
𝑣" = 𝑣",", 𝑣",! ,
𝑣! = (𝑣!,", 𝑣!,!)

ℓ 𝑊, 𝑉 = ||𝑉𝑊||MB

ℓ 𝑊, 𝑉 =
1
2
||𝑣AL𝑊||B +

1
2
||𝑣BL𝑊||B =

1
2
||𝑣AA𝑤A + 𝑣AB𝑤B||B +

1
2
||𝑣BA𝑤A + 𝑣BB𝑤B||B

Hessian (1st block-row): 𝑤!,!

𝑤!,! 𝑤!," 𝑣!,! 𝑣!," 𝑣",! 𝑣","

Remark: here,  the white box might not be strictly zero due to the cross-term, but the signal would be rather weak
(indirect multiplicative relation)

𝑤A,B
𝑤B,A

(2-layer NN, X = Identity, Y = 0, no activation)

𝑤!,"

𝑤",! 𝑤","
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Intuition: Example 3
ℓ 𝑊, 𝑉 = ||𝑉𝑊||MB

ℓ 𝑊, 𝑉 =
1
2
||𝑣AL𝑊||B +

1
2
||𝑣BL𝑊||B =

1
2
||𝑣AA𝑤A + 𝑣AB𝑤B||B +

1
2
||𝑣BA𝑤A + 𝑣BB𝑤B||B

Hessian:
(roughly estimated)

0 0

0 0

0 0

0 0

𝑤A,A 𝑣A,A

𝑤B,B
𝑣B,B

𝑣A,B𝑣B,A𝑤A,B
𝑤B,A

Remark: here,  the white box might not be strictly zero due to the cross-term, but the signal would be rather weak
(indirect multiplicative relation)

Just check the 
links!
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Summarize so far
• The special Hessian structure (partly) stems from the definition of matrix product 
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𝑓(𝑣!𝑤) = 𝑓(𝑣" ⋅ 𝑤" + 𝑣# ⋅ 𝑤#), 𝑤, 𝑣 ∈ 𝑅#

𝑤A

𝑤B

𝑣A

𝑣B

Multiplicative relation

𝒘𝟏 and 𝒗𝟏 are connected in the graph

non-zero Hessian entry



Summarize so far
• The special Hessian structure (partly) stems from the definition of matrix product 
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𝑓 𝑉𝑊 = 𝑓 𝑣23 𝑊 + 𝑣43 𝑊 = 𝑓 𝑣22𝑤2 + 𝑣24𝑤4 + 𝑣42𝑤2 + 𝑣44𝑤4

𝒘𝟏 and 𝒗𝟏,𝟏 are connected in the graph

non-zero Hessian entry

𝑤A,A 𝑣A,A

𝑤B,B
𝑣B,B

𝑣A,B𝑣B,A𝑤A,B
𝑤B,A

Multiplicative relation



Summarize so far
• The special Hessian structure (partly) stems from the definition of matrix product 
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𝑓 𝑉𝑊 = 𝑓 𝑣23 𝑊 + 𝑣43 𝑊 = 𝑓 𝑣22𝑤2 + 𝑣24𝑤4 + 𝑣42𝑤2 + 𝑣44𝑤4

𝒘𝟏 and 𝒗𝟏,𝟏 are connected in the graph

non-zero Hessian entry

𝑤A,A 𝑣A,A

𝑤B,B
𝑣B,B

𝑣A,B𝑣B,A𝑤A,B
𝑤B,A

Multiplicative relation

Lesson: learn to check the link in computational graph!



Summarize so far

Hessian:
(roughly 
estimated) 0 0

0 0

0 0

0 0

We now roughly understand the pattern, 
but not enough

Q: what about non-linearity? (relu + CE)

Q: Why does large C help?

Q: Why the circulant pattern disappear 
along training?

Q: Are the white box provably small?

A: Linear algebra might not be enough…😢
Need helps from probability (next part)

𝑤A,A 𝑣A,A

𝑤B,B
𝑣B,B

𝑣A,B𝑣B,A𝑤A,B
𝑤B,A
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Intuition from probability: the non-linear NNs
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Previously, for linear NNs: we discussed why “block-circulant-block-diag structure exists” 
Now let‘s move to non-linear NNs (relu + CE loss)

We reveal two forces: 
• Force I: a ``static force'' rooted in the architecture design;
• Force II: and a ``dynamic force'' arisen from training. 



Let us start with the “dynamic force”
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Training eliminates the block-circulant structure in 𝐻DE. Why? 
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min
'∈)!×#,*∈)!×$

1
𝑁*

+

ℓ 𝑓 𝑥+ , 𝑦+ = min
'∈)!×#,*∈)!×$

1
𝑁 *

+

− log
𝑒5 '6* (0+*

∑7 𝑒5 '6* (0,

𝜕ℓ
𝜕𝑤3

= −
1
𝑁 *

+

*
7

𝛿8*,7 − 𝑝+,7 𝑣7,3𝕝 𝑤3
-𝑥+ ≥ 0 𝑥+ ∈ 𝑅#

𝐻/&0) =
𝜕"ℓ

𝜕𝑤3 𝜕𝑣4-
=

0 ⋯ 𝑎3,!
⋮ ⋱ ⋮
0 ⋯ 𝑎3,#

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

+ 𝑂
1
𝑐
∈ 𝑅#×&,

where  𝑎3,#- = − !
9
∑+ ∑7 𝛿8*,7 − 𝑝+,7 𝑣7,3 𝕝 𝑤3

-𝑥+ ≥ 0 𝑥+,#-

only the 𝑖-th column is non-zero
(if ignoring the +𝑂 !

7
noise)

• This can explain the ``dynamic force’’:  how the “block-circulant” pattern vanishes along training

• Remark: as training goes on, we have : 𝑝+,7 → 1 for 𝑐 = 𝑦+
𝑝+,7 → 0 for 𝑐 ≠ 𝑦+

Therefore,  𝛿8*,7 − 𝑝+,7 → 0 along training

Intuition from probability: the “dynamic force”
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𝐻/&0) =
𝜕"ℓ

𝜕𝑤3 𝜕𝑣4-
=

0 ⋯ 𝑎3,!
⋮ ⋱ ⋮
0 ⋯ 𝑎3,#

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

+ 𝑂
1
𝑐 ∈ 𝑅#×&, where  𝑎!,#! = − $

%
∑& ∑' 𝛿(" ,' − 𝑝&,' 𝑣',! 𝕝 𝑤!

)𝑥& ≥ 0 𝑥&,#!

• Linear algebra perspective (like previous part): 
from computation graph, only 𝑣A,], ⋯ , 𝑣^,] are linked to 𝑤]
So only 𝑖-th column in 𝐻D/E0 is non-zero

Linear algebra & probability : the “dynamic force”
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𝐻/&0) =
𝜕"ℓ

𝜕𝑤3 𝜕𝑣4-
=

0 ⋯ 𝑎3,!
⋮ ⋱ ⋮
0 ⋯ 𝑎3,#

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

+ 𝑂
1
𝑐 ∈ 𝑅#×&, where  𝑎!,#! = − $

%
∑& ∑' 𝛿(" ,' − 𝑝&,' 𝑣',! 𝕝 𝑤!

)𝑥& ≥ 0 𝑥&,#!

Linear algebra & probability : the “dynamic force”

Key take-away: 𝐻56 ≈ 𝑂(𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝑔𝑎𝑝), which are expected to vanish
(experiments: vanishes quickly as training begins)  
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Hessian at initialization with CE loss

Training eliminates
“block-circulant” in  𝐻/0:  (previous parts)

𝐻// and 𝐻00 seems always “block-diag”:
(More involved,  see next slides)

What about the “static force”?



Case 1: linear model + MSE loss 
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Hessian in Case 1 is trivially block diagonal
We will not discuss this case in the sequel 



Case 1: linear model + MSE loss 
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Hessian in Case 1 is trivially block diagonal
We will not discuss this case in the sequel 



Case 2: linear model + CE loss 

46
This is why large # class C helps! 



Case 2: linear model + CE loss 
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Case 3: 1-hidden-layer-NN with 𝑚 neurons + MSE loss
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Case 3: 1-hidden-layer-NN with 𝑚 neurons + MSE loss
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This is why large # class C helps! 



Case 3: 1-hidden-layer-NN with 𝑚 neurons + MSE loss
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Hidden-weight Hessian: 

Output-weight Hessian: 



Case 4: 1-hidden-layer-NN with 𝑚 neurons + CE loss
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Case 4: 1-hidden-layer-NN with 𝑚 neurons + CE loss
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This is why large # class C helps! 



Case 4: 1-hidden-layer-NN with 𝑚 neurons + CE loss
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Hidden-weight Hessian: 

Output-weight Hessian: 



Summary: 3-level sources of block-diag structure

• Level 1: definition of matrix product: many zeros, no links

54

0 0

0 0

0 0

0 0



Summary: 3-level sources of block-diag structure

• Level 1: definition of matrix product: many zeros, no links

• Level 2: #Class C goes to infinity: weaken many links in 𝐻DD, 𝐻EE

55

Static force

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 0 0

≈ 0 ≈ 0 ≈ 0 0 0

≈ 0 ≈ 0 0 0 ≈ 0

≈ 0 ≈ 0 0 0 ≈ 0



Summary: 3-level sources of block-diag structure

• Level 1: definition of matrix product: many zeros, no links

• Level 2: #Class C goes to infinity: weaken many links in 𝐻DD, 𝐻EE

• Level 3: Training: eliminates strong links in 𝐻DE

56

Static force

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 0 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 0 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 0 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 0 0 ≈ 0

Dynamic force

• But how to prove rigorously? 
• Need tools from 

Random Matrix Theory (RMT)



Contents

• Part I: Empirical observations 

• Part II-1: Intuitions from linear algebra perspective

• Part II-2: Intuitions from statistics perspective

• Part III: Our theoretical results &  technical difficulties

• Part IV: Implications to LLMs
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Overview of our results
Settings: Consider general 𝐶-class classification problem: x%, y% &'(

# , 𝑥& ∈ 𝑅!, 𝑦& ∈ 1,2,⋯ , 𝐶

We prove the following results (informal): when 𝑁, 𝑑 → ∞ with !# = 𝛾, we have 

• Case 1 (linear model + MSE loss): 
For any 𝐶, Hessian is strictly block-diag with 𝐶 blocks

• Case 2 (linear model + CE loss): 
Hessian approaches block-diag with 𝐶 blocks with rate 𝑂(1/𝐶)

• Case 3 (1-hidden-layer-NN with 𝑚 neurons + MSE loss): 
• Hessian of hidden weights approach block-diag with 𝑚 blocks with rate 𝑂(1/√𝐶)
• Hessian of output weights approach block-diag with 𝐶 blocks with rate 𝑂(1/𝐶)

• Case 4 (1-hidden-layer-NN with 𝑚 neurons + CE loss): 
• Hessian of hidden weights approach block-diag with 𝑚 blocks with rate 𝑂(1/√𝐶)
• Hessian of output weights approach block-diag with 𝐶 blocks with rate 𝑂(1/𝐶)
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Main Results
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Remark: 
• Assumption 1 on data distribution is standard in random matrix theory (Pastur, 2020)

• It is possible to extend the Gaussian 𝑋9 to, e.g., Gaussian orthogonal ensembles and more general distribution

• However, such generalization is non-trivial and each case may require an independent paper 
(e.g. Pastur (2022); Pastur and Slavin (2023))



Main Results (Simplified)
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RK: We actually calculate the 
close form of F-norm for each block, 
not just their ratio
(omitted here for cleanness)

Key messages from Theorem 1:
the block-diagonal structure arises when 
# classes C → ∞



Main Results (Simplified)
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RK: We actually calculate the 
close form of F-norm for each block, 
not just their ratio
(omitted here for cleanness)

Key messages from Theorem 1 & 2:
the block-diagonal structure arises when 
# classes C → ∞



Roadmap for the Proof

• Part 3-1: Some basics of random matrix theory (RMT): useful for everyone
-- What is the goal of RMT?
-- How is RMT different from classical probability theory?
-- Introduction to Stieltjes Transform, Semicircular law, MP law

• Part 3-2: Hessian expressions and some challenges
-- why existing RMT tools cannot directly apply

• Part 3-3: Our new methods to overcome the challenges
-- based on some additional insights in Hessian of NNs
-- Our method implements the Lindeberg Principle, 

which originally proposed to prove CLT
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What is the Goal of RMT?
• Goal: RMT studies limit eigenvalue distribution of a random Hermitian 𝐴 (denoted as 𝜇:) as its size approaches ∞

• Def: we define the eigenvalue distribution of 𝐴 ∈ 𝑅&×& as the normalized counting measure of eigenvalues:

• A simple example: 

-- What we know before
Let  𝐴 = !

9
∑+ 𝑥+𝑥+- ∈ 𝑅#×#, where 𝑥+ ∈ 𝑅# are i.i.d. standard Gaussian

Then for fixed size 𝑑, let 𝑁 → ∞,𝐴 → 𝐼#×# (Law of Large Number)

In other words, 𝜇: → 𝛿!
-- What we might not know before: 

What if the size of 𝐴 increase to ∞?
RMT can answer this question: when 𝑁, 𝑑 → ∞,𝑁 = 𝛾𝑑,
then 𝜇: → MP-law (𝛾)
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𝜇: =
1
𝑑
*
4

𝛿;) :



Basic Question I: How to Define Convergence?
• Caveat: 𝐴 is random, so 𝜆: is random, so 𝜇: is a random variable
• Comparison with classical probability: 
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𝑥 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 !
"

𝜇6 =
!
"
𝛿< +

!
"
𝛿! A deterministic measure

Random 𝐴 𝜇: =
!
#
∑4 𝛿;)(:) A “random measure”! 

How to define convergence?

𝑥! 𝑥!<< 𝑥!<<< 𝑥?

𝜇! 𝜇!<< 𝜇!<<< 𝜇?Classical prob:
How to define {𝑥+}
converges to 𝑥??

Def (classical convergence of measure):
We say {𝜇&} weakly converge to 𝜇)

(or {𝑥&} converge in distribution  to 𝑥)) 
if ∀ bdd continuous 𝑓, lim

%→)
∫ 𝑓 𝑑𝜇& = ∫ 𝑓 𝑑𝜇

𝐴! 𝑥!<< 𝑥!<<< 𝑥?

𝜇! 𝜇!<< 𝜇!<<< 𝜇?RMT:
How to define {𝐴+}
converges to 𝐴??

Def:	We	say	 {𝜇&} weakly converge a.s. to a 
deterministic  𝜇) if ∀ bdd continuous 𝑓:

Pr lim
%→)

∫ 𝑓 𝑑𝜇& = ∫ 𝑓 𝑑𝜇 = 1



Basic Question II: How to characterize a distribution?

• In Classical prob, we learned characteristic function (Fourier Transform) 

• Another one: Steiltjes Transform (S-Transform), which also uniquely determines a prob measure 𝜇

• RMT usually uses 𝑆+ 𝑧 to recover 𝜇
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𝜙 𝑡 = 𝐸 𝑒3@6 = r
)
exp3@6 𝑑𝜇(𝑥)

𝑆A 𝑧 = r
)

1
𝑥 − 𝑧

𝑑𝜇(𝑥) , ∀𝑧 ∈ 𝐶B\supp(𝜇)

Theorem (Inversion formula): For any 𝑎 < 𝑏 ∈ 𝑅 and any probability measure 𝜇, we have 

𝜇 𝑎, 𝑏 = lim
C→<.

!
E ∫F

G 𝐼𝑚 𝑠A 𝑡 + 𝑖 𝜖 𝑑𝑡



• 𝑆A 𝑧 can also help us to extract the moments of 𝜇
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Basic Question II: How to characterize a distribution?

Proposition 1: for any probability measure 𝜇, we have 

𝑆A 𝑧 = − !
H
− &%

H'
− &'

H/
−⋯ , 𝑧 → ∞, where 𝑚I = ∫) 𝑡

I𝜇(𝑡) is the 𝑘-th order moment of 𝜇

Proof: 
!

@ JH
= − !

H
!

! J01
= − !

H
∑I,<? @2

H2
= −∑I,<? @2

H2.%
, when z is sufficiently large

𝑆A 𝑧 = ∫)
!

6 JH
𝑑𝜇(𝑥) = −∑I,<? ∫3 @

2#A @
H2.%

= − !
H
− &%

H'
− &'

H/
−⋯ . Q.E.D.

In our context: ||𝑨||𝑭𝟐 = 𝟐𝐧𝐝 − 𝐨𝐫𝐝𝐞𝐫 𝐦𝐨𝐦𝐞𝐧𝐭 𝐨𝐟 𝝁 (sum-of-square eigenvalues)



Some Other Properties of Steiltjes Transform

68

Implications: to find 𝜇, we just need to find 𝑆� 𝑧 or Ε 𝑆� 𝑧

Thm (Continuity theorem, deterministic version [1]): Let {𝜇+} be a sequence of deterministic prob measures, 
then 𝜇+ converges weakly to a prob measure 𝜇+ if and only if

lim+→?𝑆A* 𝑧 = 𝑆A 𝑧

Thm (Continuity theorem, random version [1]): Let {𝜇+} be a sequence of random prob measures, 
then 𝜇+ converges weakly almost surely to a prob measure 𝜇+ if and only if

lim+→?𝑆A* 𝑧 = 𝑆A 𝑧

Thm ([2]): for any sequence of Hermitian matrices {AL ∈ 𝐶+×+}, we have

For any fixed z ∈ 𝐶B, 𝑆A4* 𝑧 − Ε 𝑆A4* 𝑧 → 𝑎. 𝑠. as 𝑛 → ∞

[1]: Jeff Yao, et al., Large Sample Covariance Matrices and High Dimensional Data Analysis
[2]: Jeff Yao, Lecture notes on the Wigner Semicirclar Law Total Pages: 77



Summarize so far
• We have discussed:

1. the difference between RMT and classical probability

2. the notion of convergence
3. Steiltjes Transform and properties

• Now, how to find the limit 𝜇' of a sequence of growing random matrices 𝐴(

• We now provide two classical examples 

1. Semicircular law on  A  = Wigner matrices
2. M-P law on A = 𝑋𝑋$ Total Pages: 77 69

Pipeline in RMT:
• Step 1: Given the expression of a  random matrix 𝐴+ , try to find the limit 𝑆A4 𝑧 (abbreviation: 𝑆: 𝑧 )

[This step is not easy! Usually worth a top statistic paper if you can find 𝑆: 𝑧 for a new class of 𝐴+
(either in explicit form or implicit equations) ]

• Step 2: Recover 𝜇 from 𝑆: 𝑧
[This step largely based on experience. Has systematic strategies (e.g., Taylor expansion)]



Semicircular Law of Wigner Matrices

• Def: 𝐴+ = 𝑎3,4 !M3,4M+
is called a Wigner Matrix if :

1. 𝐴+ is Hermitian
2. 𝑎3,3 are i.i.d. real r.v.s. with unit variance
3.  𝑎3,4 , 𝑖 > 𝑗 are i.i.d. complex r.v.s with zero mean and unit variance

• Thm (Semicircular law): Consider normalized Wigner matrices �𝑨𝒏 =
!
√+

𝐴+ , then 𝜇P𝑨𝒏 converges 
weakly a.s. to Wigner semicircular distribution:

• Proof: >5 pages, see [3], omitted here
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𝜇R$ ≔ !
"E

4 − 𝑥 "
B

%
' 𝑑𝑥

[3]: Tao, Terence. Topics in random matrix theory



Semicircular Law of Wigner Matrices
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Eigenvalue histogram of  Wigner 𝐴+ , 𝑛 = 1000 , 1000 samples of 𝐴+
Red curve:  density of Semicircular distribution



MP Law of Wigner Matrices
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Thm	(Marchenko–Pastur 1967):	Let		𝑋 ∈ 𝑅#×+ whose	entries	are	i.i.d. zero	mean	and	variance	𝜎" < ∞.
Let		𝐴+ =

!
+
𝑋𝑋- ∈ 𝑅#×# .	Assume	𝑛, 𝑑 → ∞ and	#

+
= 𝜆 > 0,	then	𝜇:* a.s. weakly	converges	to	𝜇ST ,

where	for	any	subset	Ω in	R,	we	have	

𝜇ST Ω = � 1 −
1
𝜆 1 0 ∈ Ω + 𝜈 Ω , 𝑖𝑓 𝜆 > 1

𝜈 Ω , 𝑖𝑓 0 ≤ 𝜆 ≤ 1



MP Law of Covariance Matrices
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Eigenvalue histogram of 𝐴+ =
!
+
𝑋𝑋- ∈ 𝑅#×# , 𝑛 = 50, 𝑑 = 300, 1000 samples of 𝐴+

Yellow curve:  density of MP distribution with d/ n = 50 / 300



Now, we are ready for our proof
• Now we discuss the technical challenges for the Hessian in Case 2 (linear model + CE loss)
• Proof Procedure: 

1. Find diagonal block || )
,ℓ-.(,)
)./)./

0 ||/ and  off-diagonal block || )
,ℓ-.(,)
)./).1

0 ||/ when 𝑁, 𝑑 → ∞

2. Compare their ratio

• We only discuss the diagonal blocks || )
,ℓ-.(,)
)./)./

0 ||/ here, off-diag blocks are proved in the same way

where 𝑋0 = 𝑥", ⋯ , 𝑥0 ∈ 𝑅&×0,

and Λ0 = 𝑑𝑖𝑎𝑔 𝑝"1 1 − 𝑝"1 , ⋯ , 𝑝01 1 − 𝑝01 ∈ 𝑅0×0, and 𝑝(,1 =
234 ./

052
∑345 234(.3052)
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How to characterize || A�𝑋�Λ�𝑋�

L||M?



Key Challenges in the Proof

75

We will use Random Matrix Theory (RMT), but classical methods cannot be directly applied: 
• If 𝑋0 , Λ0 are independent, || "

0
𝑋0Λ0𝑋0$||/ can be found by GMP Theorem (1967)

• In our "0𝑋0Λ0𝑋0
$, 𝑋0, Λ0 are clearly NOT independent, so MP theorem cannot be applied

• Dependent matrix product is a difficult topic in RMT

Q: How to characterize the Hessian block || A
�
𝑋�Λ�𝑋�L||M?
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Diagonal Hessian block: 



Exmple of GMP law: (Assume 𝑿 and 𝚲 are independent)
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Eigenvalue histogram of 𝐴+ =
!
+
𝑋Λ𝑋- ∈ 𝑅#×# , Λ = 𝐼, 𝑛 = 50, 𝑑 = 300, 1000 samples of 𝐴+

Yellow curve:  density of MP distribution with d/ n = 50 / 300

But wait… In our "
0
𝑋0Λ0𝑋0$, 𝑋0, Λ0 are clearly NOT independent, so MP theorem cannot be applied

• Dependent matrix product is a difficult topic in RMT
• Fortunately, we observe additional good properties in our "

0
𝑋0Λ0𝑋0$



Key properties in our matrix

79

Key observation: 𝚲𝑵 and 𝑿𝑵 are asymptotic independence

• Guess: limiting eigenvalue 𝑋�Λ�𝑋�L ≈ those as if 𝑋�, Λ� are independent
• The remaining question is how to prove it rigorously.
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Our Proof Strategies

• We propose a systematic proof procedure to address the “diminishing dependencies as 𝒅 → ∞”
• Our approach implements the Lindeberg interpolation principle

which is originally proposed to prove CLT
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Goal of decouple:   
Now we want to prove:
• Claim 1: �𝐻33$U =

!
9
𝑋9 �Λ9 𝑋9- and 𝐻33$U =

!
9
𝑋9Λ9𝑋9- share the same limit eigenvalue distribution

• If so, then we can apply GMP to  �𝐻33$U
• Now we prove Claim 1

Preparation: “decoupling”: we introduce the following decoupling matrix



Our Proof Strategies (Overview)
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Step 1 (Important): “indept. copy �𝑋9 + interpolation”: we introduce the following 𝑋9(𝑡)

Our “decouple”  
Strategy: 

Step 2 (Important): Fundamental theorem of calculus

Step 3 (Important): Using Cauchy Integral Formular, we prove that 
𝛿9 𝑧 ≤ C𝑜𝑛𝑠𝑡. Ε 𝑍!𝑓 𝑍! − 𝑍"𝑓(𝑍") , where Z3 ∼ 𝑁(0,1)

Step 4 (Important): Using Stein’s Lemma, we prove that: 

Ε 𝑍!𝑓 𝑍! − 𝑍"𝑓(𝑍") = Ε 𝑓V 𝑍! − 𝑓V 𝑍" = 𝑂 (
1
√𝑁

)

Step 5 (Standard): Apply GMP to recover 𝐒P𝐇𝐢𝐢 𝐳 , 𝝁P𝑯𝒊𝒊 , 𝒂𝒏𝒅 𝝁𝑯𝒊𝒊

Goal: Wish to show that: for any 𝑧 ∈ 𝐶B, 𝛿9 𝑧 = Ε𝑠PY&& 𝑧 − Ε 𝑠Y&& 𝑧 vanishes as 𝑁 increases 

𝑋9 𝑡 = 𝑡 𝑋9 + 1 − 𝑡 �𝑋9, 𝑡 ∈ 0,1 . Note that 𝑋9 0 = 𝑋9, 𝑋9 1 = �𝑋9

𝛿9 𝑧 = r
<

!

𝐸
𝑑
𝑑𝑡

𝑠Y&& @ 𝑑𝑡

Key challenge: Need || !
9
𝑋9Λ9𝑋9-||Z , But 𝑋9 and Λ9 are dependent

RK: This step will fail if no 
asymptotic independence

Our solution: a new method built upon the Lindeberg principle (originally proposed to prove CLT)
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The Effect of Increasing C
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These quantities match our theoretical prediction



The Effect of Increasing # classes C

• The Hessian blocks of 1-hidden-laye NN with 8 hidden neurons + #class C at random init.
• The block-diag structure becomes clearer as C increases

Hessian of 
hidden weights

Hessian of 
output weights
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Summary

• We discussed the intuition behind the special structure of Hessian
• linear algebra and & probability perspective

• We rigorously prove using random matrix theory
• Key factor: # classes 𝑐 → ∞

• Technical challenges: non-independent random matrix products 𝑿𝚲𝐗𝐓
• Our solution: a new method based on the Linderberg Principle
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Summary: 3-level sources of block-diag structure

• Level 1: definition of matrix product: many zeros, no links

85

0 0

0 0

0 0

0 0



Summary: 3-level sources of block-diag structure

• Level 1: definition of matrix product: many zeros, no links

• Level 2: #Class C goes to infinity: weaken many links in 𝐻DD, 𝐻EE

86

Static force

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 0 0

≈ 0 ≈ 0 ≈ 0 0 0

≈ 0 ≈ 0 0 0 ≈ 0

≈ 0 ≈ 0 0 0 ≈ 0



Summary: 3-level sources of block-diag structure

• Level 1: definition of matrix product: many zeros, no links

• Level 2: #Class C goes to infinity: weaken many links in 𝐻DD, 𝐻EE

• Level 3: Training: eliminates strong links in 𝐻DE
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Static force

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 0 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 0 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 0 0 ≈ 0

≈ 0 ≈ 0 ≈ 0 ≈ 0 0 0 ≈ 0

Dynamic force



Guess: Hessian for Deep NNs?
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Guess: Hessian for Deep NNs?

Total Pages: 77 89

For a rough estimate:  
just check the links in the 
computational graph 

Numerical result:
Does it match your estimation?



Contents

• Part I: Empirical observations 

• Part II-1: Intuitions from linear algebra perspective

• Part II-2: Intuitions from statistics perspective

• Part III: Our theoretical results &  technical difficulties

• Part IV: Implications to LLMs
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What about the Hessian of Transformers?
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Implication I: Why Transformers Need Adam
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[1] Why Transformers Need Adam: A Hessian Perspective. Zhang,  Chen, Ding, Li, Sun, Luo, NeurIPS 2024, 
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[1] Why Transformers Need Adam: A Hessian Perspective.  Zhang, Chen, Ding, Li, Sun, Luo, NeurIPS 2024, 

Implication I: Why Transformers Need Adam
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CNN: blockwise spectrum is observed to be similar [2]
• No proof now
• SGD  ≈Adam 

Transformer: blockwise spectrum is observed to be heterogeneous [2]
• Later proved in [3]. Why? Softmax is the one to blame
• SGD  ≪ Adam 

Imbalanced label: blockwise spectrum of lm_head is observed 
to be heterogeneous [4]
• Preliminary explanation in [4]
• SGD  ≪ Adam 

Hessian of NN has very special Structure
• Proved in [1] 
• Why? large # output dim + training

Balanced label: blockwise spectrum of lm_head is observed to be similar [4]
• Preliminary explanation in [4]
• SGD  ≈Adam 
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When and Why Adam ≫ SGD? Hessian Structure Might Help

[1] Towards Quantifying the Hessian Structure of Neural Networks. 
[2] Why Transformers Need Adam: A Hessian Perspective 
[3] What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis
[4] Heavy-Tailed Class Imbalance and Why Adam Outperforms Gradient Descent on LLMs



Implication II: New algorithm Adam-mini
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[2] Adam-mini: Use Fewer Learning Rates To Gain More, Zhang, Chen, et al., ICLR 2025



LLama3-8B Pretrain: Independent verifier from PyTorch team
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Highlight:
“This is imo a very big accomplishment as most optimizers can't 
do this (meet / exceed adamw) at 8B

… and especially not while reducing memory so significantly”
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Acknowledgements from the Authors of Adam
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• “This work allows you to reduce the memory of Adam by a large factor …

This is, I think, a great result that argued from theory ”
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Implication III:  Shampoo & Muon
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True Hessian (Supported by our theory)

Our theory can support Shampoo (and Muon)

𝑤 = 𝑤 − 𝜂𝑃¥
"
! 𝑚



Implication IV:  New algorithm ASGO
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True Hessian (Supported by our theory) 𝑤 = 𝑤 − 𝜂𝑃¥
"
! 𝑚

𝑃KLMNOPP 𝑃QRST



Implication IV:  New algorithm ASGO
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True Hessian (Supported by our theory) 𝑤 = 𝑤 − 𝜂𝑃¥
"
! 𝑚

𝑃KLMNOPP 𝑃QRST



Implication V: block-wise learning rate
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Mainly based on: 

• Zhang, Chen, Ding, Li, Sun, & Luo; Why Transformers Need Adam: A Hessian Perspective, NeurIPS 2024

• Zhang, Chen, Li, Ding, Wu, Kingma, Ye, Luo & Sun; Adam-mini: Use Fewer Learning Rate To Gain More, ICLR 2025

• Dong*, Zhang* (Alphabetically ordered), Luo, Yao, Sun; Towards Quantifying the Hessian Structure of Neural Networks, Preprint

• Thanks to all the collaborators! 
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Jeff J. Yao D.P. Kingma Yinyu Ye Zhi-Quan LuoRuoyu Sun
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How to Use Adam-mini? Just 1-line code change 

Code: https://github.com/zyushun/Adam-mini
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👆 Code for Adam-mini
Currently: 
-- 400+ stars 
-- 2000+ download via pip install

(in the last two weeks)

Hessian and classical ideas are still powerful!
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Thanks for listening!


