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Overview of This Talk

Part I: Empirical observations:

* Hessian of NNs exhibit near-block-diagonal structure
(e.g., Collobert 2004; Zhang et al. 2024 a,b; Kunstner et al. 2024)

e But why? No theory so far

Part ll: Intuitions:
* Intuitions for linear NNs: a linear algebra perspective

* Intuition for non-linear NNs: linear algebra & probability perspective

Part Ill: Our theoretical results & technical difficulties
* By using random matrix theory (RMT), we rigorously prove the existence of special Hessian structure

* Explain some challenges and why traditional RMT can NOT be directly applied in our case

Part IV: Implications to LLMs
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Empirical Observations

* Hessian of NNs are numerically observed to be near-block-diagonal
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(a) Hessian of an MLP
[18] after 1 step

Hessian of an 1-hidden-layer NN

Figure from: Large Scale Machine Learning, Collobert, thesis, 2004
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Empirical Observations

* Hessian of NNs are numerically observed to be near-block-diagonal

(b) Hessian of an (c) Hessian of an MLP (d) Hessian of an
MLP at 1% step at 50% step MLP at 100% step

Hessian of 1-hidden-layer NNs

Figure (b,c,d): Why Transformers Need Adam: A Hessian Perspective, Zhang, Chen, Ding, Li, Sun, Luo, NeurIPS 2024
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Empirical Observations

* Hessian of NNs are numerically observed to be near-block-diagonal
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Hessian of Transformers Part I: Attention

Figure from: Adam-mini: Use Fewer Learning Rates To Gain More, Zhang, Chen, et al., ICLR 2025



Empirical Observations

* Hessian of NNs are numerically observed to be near-block-diagonal
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Hessian of Transformers Part I1: MLPs and embeddings

Figure from: Adam-mini: Use Fewer Learning Rates To Gain More, Zhang, Chen, et al., ICLR 2025



Empirical Observations

* Hessian of NNs are numerically observed to be near-block-diagonal
Hessian at t=0 ) t=10 t=350 - t=100

Figure 8: The diagonal Hessian blocks are orders of magnitude larger than off-diagonal blocks.

Hessian of a linear model + CE loss

Figure from: Heavy-Tailed Class Imbalance and Why Adam Outperforms GD on LLMs, Kunstner et al. NeurIPS 2024
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Empirical Observations

* Hessian of NNs are numerically observed to be near-block-diagonal
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Empirical Observations

* Hessian of NNs are numerically observed to be near-block-diagonal
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Approximated Hessian of 1 layer in Llama-7B & 32 layers in Llama-7B

Figure from: CBQ: Cross-Block Quantization for Large Language Models, Ding, et al., ICLR 2025
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Motivation: Why Studying Hessian Structure?

* 1. Hessian structure is crucial for understanding NN training

* The effectiveness of Adam
(Zhang et al 24a, Kunstner et al. 24)

* The effectiveness of general diagonal-preconditioned methods
(Sun and Ye, 21, Qu et al. 22, Das et al. 24)

* The effectiveness of recent block-diagonal-preconditioned methods
(Shampoo, Muon)

» 2. Hessian structure can help design new training methods for NNs
e Recently, Adam-mini utilizes the block-diag structure to cut down 50% memory in Adam
* Low precision training (Ding et al. 2025)
* More is coming..

« 3. Offering a new function class for optimization community

* Typical problems do NOT have such structure:
In classical non-linear programming dataset (Lavezzi et al 22), all problems have non-block-diag Hessian

* Motivate new study into this specific class of problems

Total Pages: 77
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Today, we focus on...

« Why do Hessian matrices look like this? Is it trivial?

« What does one block correspond to?

« What is the fundamental reason for this structure?
- Does it always hold for arbitrary NNs?

- If not, is there common factor holds in all above, but we overlooked?

- Is it a local property or global?

 Any more structure missed in the previous experiments?



Review: What is Hessian Matrix for NNs

Label

V11
V12 ot 0

vip(o, @

Calculate Loss £
ﬁ 1

Data: x € R%,y € R one-hot

min Nz £Cf Gon), )

WERde VERmXC

‘M{ U{ UIG(VVXn)
w=|:|eR™4y=|:|eROm fGn) = ' € R¢
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Review: What is Hessian Matrix for NNs

d d m m
d HW1W1 HW1Wm HW1U1 HW]_UC
d
d }{“ﬁnWV1 }{“ﬁnlvnm }{&anvl }1;Vn1”6
m HU1W1 HU1Wm HU1”1 H”1UC
m
m HVCW1 HUCW1 chvl H”CVC

Size of Hessian = (md + Cm) * (md + Cm)
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Initial trial: binary classification

« Simple setting: Linear model + CE loss, binary classification
« Cannot see special Hessian structures. Why?
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We find a phase transition as # class C — oo

« Simple setting:

1000
2000

3000

0 1000 2000 3000 4000

Linear model + CE loss, #C class classification
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@ It seems that large #class C is important
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Empirical Observations: CIFAR-100

« Setup: CIFAR-100, sample size N = 128, input dim d = 32000, # classes C = 100

* 1-hidden-layer NN with 8 neurons, ReLU, random init

« We observe that Hessian is near-block-diagonal. Total # blocks = # neuron + # class = 8 + 100 = 108
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Hidden-layer Hessian * E.)
(8 blocks, averaged F-norm)

But the hidden & output layer
proportion is too imbalanced

Did we miss anything in the cross-layer part?

30

Output-layer Hessian (100 blocks)

(b) 1-hidden-layer network with CE loss
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Empirical Observations: Gaussian Data

« Setup: Standard Gaussian Xy € R**N, random label in [C] , N = 5000,d =500, C = 500
(we changed d and C to balance the proportion of Hww and Hvv)

« 1-hidden-layer NN with 8 neurons, random init. Total # blocks = # neuron + # class = 8 + 500 = 508
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(a) Hessian at initialization (b) Hessian at 10% steps (f) Hessian at 100% steps

(i) block-circulant-block-diagonal structure at initialization e
(ii) The block-circulant part vanishes along training \‘UW hy?

(iii) The near-block-diagonal pattern maintains along training
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Empirical Observations: Gaussian Data

Hessian of a relu NN, input dim =# classes =500, width = 8,
CE loss +Adam, Gaussian data + random label, sample size = 5000

i i

!E i : 2 | l H
Output-layer
Hessian (Hy,.,)

O 10000 20000 30000 40000 50000 60000 70000 80000

[teration

[Click to play the video]

(i) block-circulant-block-diagonal structure at initialization i Wh 3
(ii) The block-circulant part vanishes along training &/ y .
(iii) The near-block-diagonal pattern maintains alongtraining



We reveal two forces that shape the Hessian structure:

Hidden-layer I
Hessian (H,,,,) jHe At i 0.00035

0.0003

Output-layer
Hessian (H,,,,))

0.0002

2000 4000 6000

0 2000 4000 6000

(a) Hessian at initialization (f) Hessian at 100% steps

Force I: a "“static force' rooted in the architecture design (e.g., large # Class C);
Force Il: and a "dynamic force" arisen from training.

* In the following:
* 1. We first provide intuitions on the structure
e 2. asimple explanation on the ~"dynamic force”

e 3. rigorous theory on the "static force' at random initialization
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Intuition: Example 1
 Let us start from the most simple NN:
« Example 1: Single-input-single-output (SISO):

®—, O o O
. . 1
Input data x = 1. No activation, label =0, MSE loss: #(w;v,) = p (wyvq)?
o 5 T
Gradient: e = W1Vq 0. W1V,
1 1 Observation: off-diagonal entries
are non-zero
92 2 9%¢ ——
dw, 0w, = V1 i.e., wl and v1 has “correlations”
Hessian:
Why? See from computation graph
0%¢ W — w1 and v1 are linked together
aw&avl 1vY1 avlﬁvl

Lesson: learn to check the link!
Total Pages: 77 22



Intuition: Example 2-1

« Example 2-1: Single-input-multi-output (SIMO):
(this is not a standard NN, but is good for understanding)

W»o v, ‘

Input data x = 1. No activation, label = 0, MSE loss: €(wq, Wy, V1, V) = %(lel)z + % (Wyv5)?

_ ot Wa 2
Gradient: ow, 1Y1
0% _ o 0% _ o _ 0*t _,
Hessian (15t row): owow, 1 ow 0w, ow,0v; Wit 0w, 07V,

; ] . @ ? : |
We observer two zeros in the first-row of Hessian *Why 0? Just check the links!
Total Pages: 77 Eogo’ nO Iink between Wl, ng



Intuition: Example 2-1

« Example 2-1: Single-input-multi-output (SIMO):
(this is not a standard NN, but is good for understanding)

./Wl/. Vq ® check the links!
\WZ. vz ‘

L 1 1
Input data x = 1. No activation, label = 0, MSE loss: ¢(wy, wy, V1, v5) = ~ (wiv1)? + ~ (Wo1,)?
141 W» (2] (%

This is a most simple block-circulant-block-diagonal matrix

Observation:
H;j+0 <4=m jand jare connected in the graph
(which means: i and j has multiplicative relation)

Hessian:

H;; =0 <= iandj are notconnected in the graph

(which means: i and j has no multiplicative relation)
Total Pages: 77 24




Intuition: Example 2-2
« Example 2-2: Single-input-multi-output (SIMO):

Wy Vi1 @

V1,2

Denote w = (wq, wy),

‘ vy = (U1, V2,2)

1 T. \2 1 T. N2 1 2 1 ’
t(W,v1,1;) = > (viw)“ + > (vaw)e = > (771/1W1 + V1,2W2) + > (V2,1W1 + 772,2W2)
Wy Wo V11 V1,2 V21 Uy

Hessian (1strow): w1

check the links!

Total Pages: 77 25



Intuition: Example 2-2
« Example 2-2: Single-input-multi-output (SIMO):

41 v;f,z O Denote w = (wy, wy),
Wy O
1 1 1 2 1 °
t(w,v1,1,) = > (viw)* + > (vaw)? = > (V1,1W1 + V1,2W2) + = (V2,1W1 + V2,2W2)
//
wy w, Vi1 Via  V21*F vy,
Hessian (1t row): w1

check the links!

Remark: The white box might not be 0 due to the cross-term,
Need more detailed calculation, but usually the signal can be rather weak

(due to indirect muliplicative relation) Total Pages: 77 o



Intuition: Example 2-2
1 1 2

2
(W, v1,1) = = (771,1W1 + V1,2W2) + = (172,1W1 + V2,2W2) 71 _@
2 2 ./W1/‘ e 1
31 V12
W1 Wy V11 V1,2 V1 V2,2 5, i
Wo 2 ’

W1
W»
Hessian:
Vy 1 What about here?
Just follow the same logic
V12
Va1 check the links!
()
27
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Intuition: Example 2-2

1 1

1 2

2
(W, vq,1,) = > (viw)? + > (viw)? = > (U1,1W1 + V1,2W2) + > (V2,1W1 + U2,2W2)

Hessian:

Total Pages: 77

No correlation between v, and v,
(Check the graph:
NO link between them!)
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@ @ T T
Intuition: Example 3 Denote W = [H € R¥2,V = H € R¥
« Example 3: Multi-input-multi-output (SIMO): Wi = (Wyq1, Wyo), )
W11 V4 4 ‘ wy = (Wp1, Wa2),
V12

Uy = (U2,1; Uz,z)

(W, V) = |[VW]|4 (2-layer NN, X = Identity, Y = 0, no activation)

Lo 2 L2 1 5, 1 2
f(W»V)=E||V1W|| +E||V2W|| =§||V11W1 + v1owy|| +§||V21W1 + VoW, |

Hessian (15t block-row): wi:

W12

Total Pages: 77 29



T

o 0 T
Intuition: Example 3 Denote W = [H € RP2,V = H € R2¥?
2

« Example 3: Multi-input-multi-output (SIMO): wy = (Wiq, Wao),
W11 /2 . Wy = (Wz,1, Wa2),
U122

(W, V) = |[VW]|4 (2-layer NN, X = Identity, Y = 0, no activation)

Lo 2 L2 1 5, 1 2
f(W»V)=E||V1W|| + = ||v; W] =§||1711W1 + v1owy|| +§||7721W1 + VoW, |

2 N\

Wii Wi Wy q Wy o V11 V1,2 V21 V3,2

Hessian (15t block-row): wi:

W12

Remark: here, the white box might not be strictly zero due to the cross-term, but the signal would be rather weak
(indirect multiplicative relation) Total Pages: 77 30



Intuition: Example 3

(W, V) = ||VW||?
1 1 1
f<W,V)=5||v1TW||2+5||v2TW 2 =

Hessian:
(roughly estimated)

Just check the
links!

Remark: here, the white box might not be strictly zero due to the cross-term, but the signal would be rather weak
(indirect multiplicative relation) Total Pages: 77 31



Summarize so far

* The special Hessian structure (partly) stems from the definition of matrix product

f(vTW)=f(v1-W1+v2-W2), W,UERZ
|

!

Multiplicative relation

O . @

w41 and v, are connected in the graph

|

non-zero Hessian entry

Total Pages: 77 33



Summarize so far
* The special Hessian structure (partly) stems from the definition of matrix product
fOW)=fwi W +vy W) = f(vwy +v,w, + 0wy + v5,w;)

W11 V1 @

Multiplicative relation

w1 and v ; are connected in the graph

non-zero Hessian entry 00

Total Pages: 77 010 34




Summarize so far
* The special Hessian structure (partly) stems from the definition of matrix product
fOW)=fwi W +vy W) = f(vwy +v,w, + 0wy + v5,w;)

Sl Vi1 @

Multiplicative relation

w1 and v ; are connected in the graph

non-zero Hessian entry 00

Lesson: learn to check the link in computational graph! 0|0
Total Pages: 77 010 35




Summarize so far

We now roughly understand the pattern,
but not enough

, Q: what about non-linearity? (relu + CE)
Hessian:

(roughly
estimated)

Q: Why does large C help?

Q: Why the circulant pattern disappear
along training?

Q: Are the white box provably small?

A: Linear algebra might not be enough...®
Need helps from probability (next part)

Total Pages: 77 36
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Intuition from probability: the non-linear NNs

Previously, for linear NNs: we discussed why “block-circulant-block-diag structure exists”
Now let‘s move to non-linear NNs (relu + CE loss)

0.0003

2 0.00000 2000 4000 6000
0 2000 4000 6000

We reveal two forces:
* Force l: a static force" rooted in the architecture design;

* Forcell: and a ‘dynamic force" arisen from training. .



Let us start with the “dynamic force”

Hidden-layer || | || Crosstlayer, | |
Hessian (H,,,,) )i

1000
2000
3000

4000

Output-layer
Hessian (H,,,,)

5000
6000

7000

0 2000 4000 6000

(a) Hessian at initialization
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(f) Hessian at 100% steps

Training eliminates the block-circulant structure in H,,,,. Why?

Total Pages: 77
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Intuition from probability: the “dynamic force”

T
e o(Wxn) vy,

min 2 2(f (), yn) = —log

min — E
WeRde yermxcC N WeRmxd,VeRme N ZC eO'(Wxn)T‘UC
n

Z 2(5)/116 Pn C)vClH(W Xp = O)Xn € R¢

awl
S 0%¢ |, T 0 .. 0 ‘o G) ¢ paxm  only the i-th column is non-zero
M Ow; 0vf 0 a; 0 0 c ' (if ignoring the +0 (%) noise)
1
where a; g/ = N Xn Zc(6yn,c - pn,c)vc,i H(WiTxn = O)xn,d’

* Remark: as training goes on, we have : p, . — 1 for ¢ = y,

p — 0 forc # y -Therefore’ (5yn,c _ pn,c) - 0 along training
n,c n

« This can explain the “dynamic force”: how the “block-circulant” pattern vanishes along training

Total Pages: 77 40



Linear algebra & probability : the “dynamic force”

Label
X 0
Calculate Loss £ 1

2 e

xd O
62£ O °e al’l 0 coe O 1 L .

HWi”j = 3 3 T = |: 1+ 0 (—) € Rde, where aiq = N Xn Zc(dyn,c - pn,c)vc,i]](wi Xn 2 O)xn,d,

Wi o a0 e 0 c

* Linear algebra perspective (like previous part):
from computation graph, only v, ;,---, v ; are linked to w;
So only i-th column in Hy, I8 non-zero

Total Pages: 77 41



Linear algebra & probability : the “dynamic force”

Label

V1,1

X1 Vi3 0% =’ 0

Xy V(i 05 . Calculate Loss £ 1

X4 .

62£ 0 e a’i,l O cee O 1 ) ) )
HW"U' = T — E . ; S . 5 + 0 (_) (= Rde, where ai’dr = _N Zn D C(Syn,c — Pn,c ’UC,L']](WL- Xn > O)Xn’d/
ivj ) _

Iw; 9v; 0 -~ aq0 - 0 ¢

/“

Key take-away: H,,,,, = O(optimality gap), which are expected to vanish
(experiments: vanishes quickly as training begins)
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What about the *“static force”?

o —
1000 - (00035
2000 - 0.000320
3000 o 0.000235
4000 0.00020
3000 0.0001S
G000 0.00010
7000 0.00005
0 2000 : 4000 i 0.00000
Hessian at initialization with CE\loss
Training eliminates H,,, and H,, seems always “block-diag™:
“block-circulant” in H,,,: (previous parts) (More involved, see next slides)

Total Pages: 77



Case 1: linear model + MSE loss

m‘}ngMSE =t Z | Vxn — yn”%r
*Imse(V) _

dv; v, N En 1 xnx for i,j c [C]
*Uvse(V) _

aviavT o OdXd
J

Hessian in Case 1 is trivially block diagonal
We will not discuss this case in the sequel

Total Pages: 77
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Case 1: linear model + MSE loss

min EMSE (V) =

Vv

0 —
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Case 2: linear model + CE loss

exp(v Xn) )

mII‘IeCE — e lo
/ v 5 (et

Define p,, ; := exp(v,' xn)/ (Zf:l exp(v,) xn)). The Hessian matrix is, for i,j € [C].

0% 0cg (V) -
aviav N Zn =1 p?’l l( - pn,i)xnxn

*lcp(V) _ T
av,-av]T _ Z:n 1 Pn,iPn,jXnXy -

Intuitive understanding: at random initialization, suppose each entry in V' follows i.i.d. zero-
mean Gaussian distribution, we have p,; ~ & for all n € [N],i € [C]. As such:

32ECE(‘T/) - ,

~ &N ~ 1 1\ — ’
0%Lcg(V) anl pn,i(l o pn,i) (6 (1 _ U) C-1
Bviav;_ o

which pushes the Hessian to become block-diagonal as C' — oo.

This is why large # class C helps!
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Case 2: linear model + CE loss

min {cg(V)

%

exp(vT Xi)

Zlog 7
n 1

TS exp(0] %)

Define p,, ; := exp(v,' xn)/ (Z§=1 exp(v,) xn)>. The Hessian matrix is, for i,j € [C].
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2
“lce(V) _ E (1—ppi)x i
v 90} N &n= 1Pnz Pn,z n+n
v
2
d ECE(V) — E P iPniX xT
- n
0v;00] - N &n=1FPniPn,;
]
0% — .
- 0.0016 0.00012
1000
10000
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Case 3: 1-hidden-layer-NN with m neurons + MSE loss

mmﬁMSE(W V — Z ||V0' WJC) yn”%/

W,V n

The hidden-layer Hessian Hy,y, is: for i, j € [m],

-
d gMSE(W V) _ 1 (Zg: : vgi) (ZNzl 1(w] x, > O)xnx;;r)

ow; aw

2
9 eg,ljz(;v V) _ 1 (EC g vClvc]) (z,szl L(w, xn > 0)1(w, xn > O)xnx;lr) .

N\

The output-layer Hessian Hy, is: for i,j € [C],

[ Physe(W,V) _ 1 «N
wse(0Y) = & BN o (W) (W) T

2 lpse (W,V) _
avlav OdXdl

/N
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Case 3: 1-hidden-layer-NN with m neurons + MSE loss

Intuitive understanding: at random initialization, suppose entries in v; € R? follow an i.i.d.
zero-mean Gaussian distribution, then

a2€MSE(VVJ/) C)
ol ) '
8wi8w;'_ F B ,

Since v; ;, v; ; are independent, Cov(v; 4, v; j) = 0 and thus the block-diagonal structure occurs as
C — oo.

This is why large # class C helps!
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Case 3: 1-hidden-]

Hidden-weight Hessian:

Output-weight Hessian:
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Case 4: 1-hidden-layer-NN with m neurons + CE loss

N ex vT o(Wx
min bep(W, V) = _l Z log p( (Wxy))
A% N — Z —1 eXP(UTU(Wxn))

The Hessian matrix for the hidden weights is: for i, j € [m)],

2
0“lcg(W,V C
31(L:)E(3w } = - N Zn 1 (Zc—l Pn, cvgz - (Zc:l pn,cvc,i) ) l(w;rxn > O)xnx;lr

) C c
agqiEg‘; V) _ =1 Zn . (ZC 1 PV ile s — (Zczl pn,cvc,i) (Zczl pn,cvc,j)) 1(w; z,, > O)l(w;r:cn > 0)z,z,

(12)
The Hessian matrix for the output weights is: for i, j € [C],
8*bcg(W,V
) = 4 1701~ o (W) (W) -
622332‘2/‘/) o % n:1 pn,ipn,ja(an)a(Wxn)T-
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Case 4: 1-hidden-layer-NN with m neurons + CE loss

Intuitive understanding: at random initialization, suppose entries in W, V' follows i.i.d. zero-
mean Gaussian distribution, we have p,, ; ~ % for alln € [N],i € [C]. As such:

02Lce(W,V) . - "
Ouidw; g (Zczl eter D (Zczl v”) (ZC_ Yeig )) /C Cooo Cov(vis, Vi j)
2ewy)| ~ Var(vig)
35)?(%10: : (20021 ,U<2:,i o (ZC Ve z) ) /C ( 2 2)

F

(14)

Since v; ;, v; ; are independent, Cov(vj i, v, j) = 0 and thus the block-diagonal structure occurs as
C — oo. Similarly, we have

3szE(W+V) R 1

Owidv; g Dpm1PngPri . gz 1 (15)
. & S oy e
8240cp(W,V) P ead—godl @ @

3v¢8v;r r

and thus the block-diagonal structure arises as C' — oo.

This is why large # class C helps!
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Case 4: 1-hidden-layer-NN with m neurons + CE 1

Hidden-weight Hessian:

Output-weight Hessian:
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Summary: 3-level sources of block-diag structure

* Level 1: definition of matrix product: many zeros, no links

o4



Summary: 3-level sources of block-diag structure

* Level 1: definition of matrix product: many zeros, no links
tatic force
* Level 2: #Class C goes to infinity: weaken many links in H,,,,, H,,
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Summary: 3-level sources of block-diag structure

* Level 1: definition of matrix product: many zeros, no links
Static force
* Level 2: #Class C goes to infinity: weaken many links in H,,,,,, H,

* Level 3: Training: eliminates strong links in H,,, } Dynamic force

* But how to prove rigorously?
* Need tools from
Random Matrix Theory (RMT)
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Overview of our results

Settings: Consider general C-class classification problem: (xp, vo)N_1,x, € R%, y, € {1,2, -

We prove the following results (informal): when N, d — oo with % =y, we have

« Case 1 (linear model + MSE loss):
For any C, Hessian is strictly block-diag with C blocks

« Case 2 (linear model + CE loss):
Hessian approaches block-diag with C blocks with rate 0(1/C)

« Case 3 (1-hidden-layer-NN with m neurons + MSE loss):
* Hessian of hidden weights approach block-diag with m blocks with rate 0(1/\/C)
* Hessian of output weights approach block-diag with C blocks with rate 0(1/C)

« Case 4 (1-hidden-layer-NN with m neurons + CE loss):
* Hessian of hidden weights approach block-diag with m blocks with rate 0(1/\/C)
* Hessian of output weights approach block-diag with C blocks with rate 0(1/C)

Total Pages: 77
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Main Results

Assumption 1 The entries of the data matrix X = (x1,--- ,zn) € RN agreii.d N(0,1).

Assumption 2 The model weights in W and V' are initialized by LeCun initialization. That is: for
the linear model, Vi ; L (0,1), i € [Cl,j € [d]; for 1-hidden-layer network, W s (0, 3),
. : iid. : .

i € [m,j € [d), Vig & N(0, 1), i € [C], 5 € [m].

Remark:
* Assumption 1 on data distribution is standard in random matrix theory (Pastur, 2020)

» Itis possible to extend the Gaussian Xy to, e.g., Gaussian orthogonal ensembles and more general distribution

* However, such generalization is non-trivial and each case may require an independent paper
(e.g. Pastur (2022); Pastur and Slavin (2023))
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Main Results (Simplified)

Theorem 1 (Linear models.) Consider the Hessian expressions in (5) and assume Assumptions 1
and 2 hold. Suppose d, N — 00, % — v € (0,+00), then for fixed C > 2, it holds almost surely

2
824cx(V)
=yt
i M2 e _ 95(,C) C?gii(7,C) _ vye’ +1
dN=00 || 9205(V) 2 gi(v,C)’ C- gi(y,C) ve + 1

8vi avi

(20)

F
When C' — o0, the ratio vanishes at the rate O(1/C?), and the block-diagonal structure emerges.

RK: We actually calculate the

close form of F-norm for each block, Key messages from Theorem 1:
not just their ratio the block-diagonal structure arises when
(omitted here for cleanness) # classes C — oo
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Main Results (Simplified)

Theorem 2 (1-hidden-layer networks.) Consider the Hessian expressions in (8) to (13), and

assume Assumptions I and 2 hold. Then for any fixed m > 3, suppose d, N — 00, % — v €
(0, +00), it holds that

2 2 2
8%l (W,V 8% byse (W, V 8%8cg(W,V
E Btf)sgw i : . E 6N11)s,-[:('§w;r : & E 65)5(61)1. ) -
dll\}m = 5T d}l&m = 5T d}l\}m = S (28)
yIN—00 yJIN—00 JIN —00
E 924cp(W,V) E 92 byse (W, V) E 024cg(W,V)
dw;idw; P Ow;dw, P Ovidv; 2

vanish at the rate O(1/C), O(1/C), O(1/C?), respectively, and the block-diagonal structure also
emerges as C' increases.

RK: We actually calculate the Key messages from Theorem 1 & 2:
close form of F-norm for each block, the block-diagonal structure arises when
not just their ratio # classes C = oo

(omitted here for cleanness)
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Roadmap for the Proof

* Part 3-1: Some basics of random matrix theory (RMT): useful for everyone
-- What is the goal of RMT?

-- How is RMT different from classical probability theory?
-- Introduction to Stieltjes Transform, Semicircular law, MP law

e Part 3-2: Hessian expressions and some challenges

-- why existing RMT tools cannot directly apply

* Part 3-3: Our new methods to overcome the challenges
-- based on some additional insights in Hessian of NNs

-- Our method implements the Lindeberg Principle,
which originally proposed to prove CLT
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What is the Goal of RMT?

* Goal: RMT studies limit eigenvalue distribution of a random Hermitian A (denoted as u,) as its size approaches

. Def: we define the eigenvalue distribution of A € R%%? as the normalized counting measure of eigenvalues:

1
Ha =~ Z 02(4)
J

* Asimple example:

-- What we know before
let A = % Yo x,xt € R**4 where x,, € R are i.i.d. standard Gaussian

Then for fixed size d, let N - o, A — 1,44 (Law of Large Number)
In other words, p, — 64
-- What we might not know before:

What if the size of A increase to 00?
RMT can answer this question: when N,d — oo, N = yd,

then uy, — MP-law (y)
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Basic Question I: How to Define Convergence?

» Caveat: A is random, so 4, is random, so u, is a random variable

« Comparison with classical probability:

x ~ Bernoulli G) — [y = %50 + %51 ===) A deterministic measure

1
Random 4 — M= Ezj 57Lj(A) — A “‘random measure”!
How to define convergence?

=) Def (classical convergence of measure):

- . U H1o00 Hoo
Classical fPrOb- ‘# 100 We say {u,,} weakly converge to pi,
How to define {x,} (or {x,} converge in distribution to x)
converges {0 x,? X4 X100 X1000 s if v bdd continuous £, lim [ f du, = [ f du

Def: We say {u,} weakly converge a.s. to a

RMT: | H1 H100 H1000 Heo deterministic . if v bdd continuous f:
converges to A,? A, X100 X1000 Xo, n—o
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Basic Question II: How to characterize a distribution?

« In Classical prob, we learned characteristic function (Fourier Transform)

d(t) = E(e'™) = Jexpitx du(x)
R

« Another one: Steiltjes Transform (S-Transform), which also uniquely determines a prob measure u

1
u(2) = | = dux), vz € C\supp()

« RMT usually uses s,(z) to recover u

Theorem (Inversion formula): For any a < b € R and any probability measure u, we have

u([a, b)) = Elirggf%f: Im (sﬂ(t + i 6)) dt



Basic Question II: How to characterize a distribution?

 S,(z) can also help us to extract the moments of u

Proposition 1: for any probability measure u, we have

S,(2) = —5— % —% — -,z —> o, where my, = [, t*u(t) is the k-th order moment of
Proof:
1 1/ 1 1 o tk O . .
P == (:) == (Zk=0 Z_k) = _Zk=0ﬁ' when z is SUﬁIClenﬂy large
1 o Jpthdu®) 1 my m
Su(z) = foTZ du(x) = — Xk=o Rzk+1 = _;_2_21 _2_32 — . QE.D.

In our context: ||A4||% = 2nd — order moment of u (sum-of-square eigenvalues)
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Some Other Properties of Steiltjes Transform

Thm (Continuity theorem, deterministic version [1]): Let {i,,} be a sequence of deterministic prob measures,
then p,, converges weakly to a prob measure u,, if and only if

limy, S, (2) = S,(2)

Thm (Continuity theorem, random version [1]): Let {1, } be a sequence of ,
then u,, to a prob measure u,, if and only if

limy,_,0S,, (z) = 5,(2)
Thm ([2]): for any sequence of Hermitian matrices {A, € C™"}, we have
For any fixed z € CT, SMAn(Z) —E SuAn(Z) — @.5. asn —

Implications: to find u, we just need to find S, (z) or E S, (2)

[1]: Jeff Yao, et al., Large Sample Covariance Matrices and High Dimensional Data Analysis
[2]: Jeff Yao, Lecture notes on the Wigner Semicirclar Law: pages: 77 68



Summarize so far

* We have discussed:
1. the difference between RMT and classical probability
2. the notion of convergence
3. Steiltjes Transform and properties

* Now, how to find the limit 1, of a sequence of growing random matrices {4,,}

Pipeline in RMT:
- Step 1: Given the expression of a random matrix A4,,, try to find the limit S, , (z) (abbreviation: S,(z) )

[This step is not easy! Usually worth a top statistic paper if you can find S,(z) for a new class of 4,
(either in explicit form or implicit equations) ]

« Step 2: Recover u from S,(2)
[This step largely based on experience. Has systematic strategies (e.g., Taylor expansion)]

* We now provide two classical examples
1. Semicircular law on A = Wigner matrices

2. M-P IaW onA = XXT Total Pages: 77 69



Semicircular Law of Wigner Matrices

« Def: 4, = (ai,j)lsi’an is called a Wigner Matrix if :
1. A,, is Hermitian

2. a;; are i.i.d. real r.v.s. with unit variance
3. a;;, 1> jareiid. complex r.v.s with zero mean and unit variance

 Thm (Semicircular law): Consider normalized Wigner matrices 4,, = \/1—”

weakly a.s. to Wigner semicircular distribution:

1
1 —
Usc =5- (4 — |x|#)2 dx

* Proof: >5 pages, see [3], omitted here

[3]: Tao, Terence. Topics in random matrix theory
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Semicircular Law of Wigner Matrices

0.35

03F

025

02F

015

0.1F

005

Eigenvalue histogram of Wigner 4,,,n = 1000, 1000 samples of 4,,
Red curve: density of Semicircular distribution
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MP Law of Wigner Matrices

Thm (Marchenko-Pastur 1967): Let X € R**™ whose entries are i.i.d. zero mean and variance g2 < oo,
Let A, = % XXT € R Assumen,d — o andnE = A > 0, then u,  a.s.weakly converges to uyp,
where for any subset () in R, we have

1
typ (Q) = (1 _I) 10 Q) +v(Q),if 1> 1

v(Q), ifo<a<i

i \/(A+,—-m)(m-—-Aw)

 97o? Az

locppop,) dz
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MP Law of Covariance Matrices

10 |

0.25 0.50 0.75 100 125 150 175 200 225

Eigenvalue histogram of 4,, = % XXT € R4 n =50,d = 300, 1000 samples of 4,,
Yellow curve: density of MP distribution with d/ n =50/ 300
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Now, we are ready for our proof

* Now we discuss the technical challenges for the Hessian in Case 2 (linear model + CE loss)
* Proof Procedure:

. Find diagonal block || — o {)CE (V) || and off-diagonal block || = *tce (V)

viovT ||F when N,d — o

2. Compare their ratio

2
* We only discuss the diagonal blocks || aai_cgg) ||r here, off-diag blocks are proved in the same way

O%Ucg(V

5 1 1
= a,v ( ) anz pn,z')a:nzc,,f — NXNANX]—\C & Rdxd’
1

where Xy = (x4, -, xy) € RV,

T
and Ay = diag(p1;(1 — p1p), -, oni(1 — pni)) € R¥VN, and p; = exp(v; n)

Ye=1 €Xp(Vxn)

1
How to characterize ||NXNANX£||F? .



Key Challenges in the Proof

. . *ce(V) ¢ 1 Al T, 1 T . mdxd
Diagonal Hessian block: — — i(l —pni)znz, = =XNANXy € R*Y,

8’0181) N £ N

. . 1
Q: How to characterize the Hessian block || NXNANX{,HF?

We will use Random Matrix Theory (RMT), but classical methods cannot be directly applied:
« If Xy,Ay areindependent, || %X vANXE||F can be found by GMP Theorem (1967)

* Inour %XNANXﬁ, Xy, Ay are clearly NOT independent, so MP theorem cannot be applied
* Dependent matrix product is a difficult topic in RMT
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Exmple of GMP law: (Assume X and A are independent)

Eigenvalue histogram of 4,, =% XAXT € R4 A =1,n=50,d =300, 1000 samples of 4,,
Yellow curve: density of MP distribution with d/ n=50/300

But wait... In our %XNANX{,, Xy, Ay are clearly NOT independent, so MP theorem cannot be applied

* Dependent matrix product is a difficult topic in RMT
* Fortunately, we observe additional good properties in our%XNANXﬂ
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Key properties in our matrix

exp(v] xn)
Yc=1 €Xp (vgxn)

(V) 5 1 ¢ T d T _ mdxd =
W . an::lpn,i(l — Pn,i)TnTy, = NXNANXN € R™%, and Pn,i

Key observation: Ay and Xy are asymptotic independence

NN

). Further, since x ~ N(0,1), we have

e Recall v; ~ N(0, 7) and denote z = v, xy, then z|x ~ N(0, ”’;”
2
% ~ Xz(l, %), which concentrates to 1 as d — oo.

e As such, z asymptotically follows N (0,1) and thus is independent of x. Therefore, Ay and Xy are
asymptotically independent.

* Guess: limiting eigenvalue XyAyX7 = those as if Xy, Ay are independent
* The remaining question 1s how to prove it rigorously.
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Our Proof Strategies

* We propose a systematic proof procedure to address the “diminishing dependencies as d — ©0”

* Our approach implements the Lindeberg interpolation principle
which 1s originally proposed to prove CLT

Preparation: “decoupling”: we introduce the following decoupling matrix

cp_ 1 i ' exp(v] &)
H;; — i(l = Dni)en®,, Dni:= : (32)
=N " > o1 exp(v] Tn)
where Xy = (T, -+ ,Zn) € R¥*™ is an independent copy of X y.
Goal of decouple:
Now we want to prove
e Claim 1: HCE —XNAN X% and HSE = ~ XyAyXE share the same limit eigenvalue distribution

* If so, then we can apply GMP to  HS®
* Now we prove Claim 1
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Our Proof Strategies (Overview)

Key challenge: Need || 1x vANXY ||, But Xy and Ay are dependent

Our solution: a new method built upon the Lindeberg principle (originally proposed to prove CLT)

Our “decouple”

Strategy:

—

m—

Step 1 (Important): “indept. copy X, + interpolation”: we introduce the following Xy (t)

Goal: Wish to show that: forany z € C%, 6y (2) = Esg.(z2) — E sy, (2) vanishes as N increases

Step 2 (Important): Fundamental theorem of calculus
1

d
5N(Z) — JE [E SHii(t)] dt
0

Step 3 (Important): Using Cauchy Integral Formular, we prove that
Oy (z) < Const.E[Z,f(Z,) — Z,f(Z,)], where Z; ~ N(0,1)

RK: This step will fail if no
asymptotic independence

Step 4 (Important): Using Stein’s Lemma, we prove that: /
E[Z1f(Z1) - sz(Zz)] = E[f’(Z1) _f’(Zz)] 0 (\/ )

Step 5 (Standard): Apply GMP-to recover Sy (z), P, and py,




The Effect of Increasing C

02Lcg(W,V)
B dw 0w, F
¥ =
4

F azecgf W,V)

E)wzawér

0%Lce(W, V)
0wy awlT

0%Lcg(W, V)
w1 asz

4 12_d

2
geE._ 1 gee _ C

i | d

F

1r

09

08

07r
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05

o4r
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02

01

CE
H12
r

' 4 ' " I i I 4 i o ] . 'Y
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 5 10 15 20 25 30

C C C
(@)CveHy (b) Cvs. HY () Cvs.r

These quantities match our theoretical prediction
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The Effect of Increasing # classes C

0 T 0.008 0.0012
0.0035
0.007 0.0040
100 0.0030 0.0010
0.0035
0.006
0.0030 0.0025 0.0008
200 0.005
H 1 f 0.0025 0.0020
eSSIa n O 0.004 0.0006
0.0020
300 0.0015
. . 0.003
iIdden weights
0.0010
400 0.002 0.0010
0.0002
0.001 0.0005 0.0005
200 0.000 0.0000 0.0000 0.0000
100 200 300 400 500
1€=d
X 0
0.0035 36008 -
1000
0.0030 0.0007 . 0.00040 e
S 0.00035 2000
0.0006 «
0.0025 . i
iy 0.00030
0.0005 . 3000
0.0020
H 0.00025 1.00
essilan o 0.0004 : 4000
0.0015 0 0.00020 0.75
. 0.0003 " 5000
output weights :
X g 0.50
0.0002 N 6000
. 0.00010
0.0005 0.25
0.0001 . 0.00005 7000
0.0000 0.0000 0.00000 0.00

0 10 20 30 40 50 60 70 50 100 150 200 250 300 350 0 100 200 300 400 500 600 700 0 1000 2000 3000 4000 5000 6000 7000

(@) C =10 (b) C =50 (c) C = 100 (d) C = 1000

« The Hessian blocks of 1-hidden-laye NN with 8 hidden neurons + #class C at random init.

« The block-diag structure becomes clearer as C increases
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Summary

 We discussed the intuition behind the special structure of Hessian
* linear algebra and & probability perspective

* We rigorously prove using random matrix theory
* Key factor: # classes ¢ = oo

» Technical challenges: non-independent random matrix products XAX'
* Our solution: a new method based on the Linderberg Principle
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Summary: 3-level sources of block-diag structure

* Level 1: definition of matrix product: many zeros, no links
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Summary: 3-level sources of block-diag structure

* Level 1: definition of matrix product: many zeros, no links
tatic force
* Level 2: #Class C goes to infinity: weaken many links in H,,,,, H,,
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Summary: 3-level sources of block-diag structure

* Level 1: definition of matrix product: many zeros, no links
Static force
* Level 2: #Class C goes to infinity: weaken many links in H,,,,,, H,

* Level 3: Training: eliminates strong links in H,,, } Dynamic force
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Guess: Hessian for Deep NNs?
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Guess: Hessian for Deep NNs?

Hessian of a relu NN, input dim = # classes = 500, width = 8,

CE loss +Adam, Gaussian data + random label, sample size = 5000

For a rough estimate:
just check the links in the

Y085
0

. - - 00 s 0.00000 ‘ 10000 .’0(‘)00 i()(’)i)‘(;e;[)i(if};)lowr()ll)v()o 60(‘)00 '.TOOIOO 80000
computational graph
Hessian of a relu NN, input dim = # classes = width = 50,
] CE loss + Adam, Gaussian data + random label, sample size = 500
Numerical result:

Does it match your estimation?

0 2000 4000 6000 8000
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What about the Hessian of Transformers?

#blocks = #attention heads Less clear (treat as #output neurons)

50 £
e

100

200

e 100 150 200 250 : #bIOCkS
(a) query (4 heads) (b) key (4 heads) (c) value (4heads) Embedding layer (8 tokens) | = #tokens

0.0016 0

251

50 50 100 150 200

0.0030

0.0014

0.0025
0.0012

0.0020 0.0010

0.0015 0.0008
0.0006
0.0010
0.0004

0.0005
0.0002

0.0000 0.0000 120

100 120

20 40

(32 neurons) 1p.proj (16 neurons)  Qutput layer (8 tokens)

#blocks = #output neurons |

(0 0]
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Implication I: Why Transformers Need Adam

Blockwise Hessian spectrum

1st MLP FC Layer 2

1st convolutional layer h
MLP layer / o 2nd Query
Projection -
Query —| ] NN
Value | = o ‘ | ‘ ,
Key o 2nd Value
MLP layer . m I
Projection 3rd MLP FC Layer
Query -
Value \
Key 1077 AWV'JL’WA n
ResNet18 ggn_v_¥]
. A Y
EBlE2normalize ( SERTHL )

SCfREigen-rangetfZ > 2004
CNNs: blockwise spectrum are quite similar Transformers: blockwise spectrum are largely different

We call it "homogeneity” S, We call it "heterogeneity”
Otal page: 36

[1] Why Transformers Need Adam: A Hessian Perspective. Zhang, Chen, Ding, Li, Sun, Luo, NeurIPS 2024,
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Implication I: Why Transformers Need Adam

JS-distance among blocks

SGD = Adam
on CNNs

(a) ResNet18

CNNs €=

SGD <« Adam
on Transformers

(e) ViT-base (f) GPT2 I

Figure 4: The JS distance among blockwise Hessian spectra for different models at initialization.

Observation 1: Heterogeneity is widely observed in Transformers, but not on CNNs!

Total page: 58 37

[1] Why Transformers Need Adam: A Hessian Perspective. Zhang, Chen, Ding, L1, Sun, Luo, NeurIPS 2024,
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When and Why Adam > SGD? Hessian Structure Might Help
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5
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; 0.0002
0.0001
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0

Hessian of NN has very special Structure

Proved in [1]
Why? large # output dim + training

tecture

1

Arch

Data

CNN: blockwise spectrum is observed to be [2]
e No proof now

Transformer: blockwise spectrum is observed to be heterogeneous [2]
* Later proved in [3]. Why? Softmax 1s the one to blame
* SGD K Adam

Balanced label: blockwise spectrum of Im_head is observed to be [4]
* Preliminary explanation in [4]

Imbalanced label: blockwise spectrum of Im_head 1s observed
to be heterogeneous [4]

* Preliminary explanation in [4]

* SGD K Adam

[1] Towards Quantifying the Hessian Structure of Neural Networks.

[2] Why Transformers Need Adam: A Hessian Perspective

[3] What Does It Mean to Be a Transformer? Insights from a Theoretical Hessian Analysis
[4] Heavy-Tailed Class Imbalance and Why Adam Outperforms Gradient Descent on LLMs



Validation loss (log)

Implication II: New algorithm Adam-mini

6x10°

w—— AdamW-6e-4-39M
—— AdamW-6e-4-67M
4x10°1 — AdamW-6e-4-102M
= AdamW-6e-4-162M
= AdamW-6e-4-271M
w— AdamW-2e-4-1B

= = Adam-mini-6e-4-39M
= = Adam-mini-6e-4-67M
3x10°| —~ Adam-mini-6e-4-102M
= =  Adam-mini-6e-4-162M
= = Adam-mini-6e-4-271M
=+ Adam-mini-2e-4-1B

Llama Series Pre-training (by Chinchilla's Law)

1015 1016

1017 1018 101 1020
FLOPs (log)

(a) Scaling laws in terms of compute

Llama Series Pre-training (by Chinchilla's Law)

N . R 53.92 GB

5 4x10° \\\ ® AdamW . 5572.19

L) \Q -==- Adam-mini

@ \‘ ® Adam-mini

2

= LN

= 3x10° ;\

©

- LN

G %y

. e

£ e AdamW Adam-mini =~ AdamW Adam-mini
\\\ Memory () Throughput (1)

~
0 . T
o 10107 108 10° 1010

Parameters (log)

(b) Scaling laws in terms of parameters

Chinchilla Scaling laws of Adam-mini: same performance as AdamW, but with 50% less memory

[2] Adam-mini: Use Fewer Learning Rates To Gain More, Zhang, Chen, et al., ICLR 2025
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Train loss

10

LLama3-8B Pretrain: Independent verifier from PyTorch team

Llama3-8B Pre-train on C4

——- AdamW-3e-4
Adam-mini-3e-4

lessw2020 commented 5 days ago - edited Author

Hi @zyushun - congrats! With a slight bump in Ir (3e-4 mini vs
1e-4 adamw) and mini shows very similar curves but with
overall outperformance! This is imo a very big accomplishment
as most optimizers can't do this (meet / exceed adamw) at 8B
scale and esp not while reducing memory so significantly.

2000 4000 6000 8000 10000
Iteration

Highlight:
“This is imo a very big accomplishment as most optimizers can't
do this (meet / exceed adamw) at 8B

... and especially not while reducing memory so significantly”
Total Pages: 77 96



Acknowledgements from the Authors of Adam

* Photo shot at ICLR 2025 Test of Time Speech by Dr. Durk Kingma and Prof. Jimmy Ba
* “This work allows you to reduce the memory of Adam by a large factor ...

This is, | think, a great result that argued from theory ”
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Implication III: Shampoo & Muon

1
w=w —nP 2zm

PHM P Sl\a,«m‘;o o

i \ f//_g\

7,

True Hessian (Supported by our theory)

0 2000 4000 6000

Our theory can support Shampoo (and Muon)
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Implication IV: New algorithm ASGO

ASGO: Adaptive Structured Gradient Optimization
Kang An'* Yuxing Liu?! Rui Pan?, Shigian Ma!, Donald Goldfarb®, Tong Zhang?

IRice University 2University of Illinois Urbana-Champaign 3Columbia University

{kang.an,shiqian.ma}@rice.edu, {yuxing6,ruip4,tozhang}@illinois.edu, goldfarb@columbia.edu

1
True Hessian (Supported by our theory) w=w —nP 2m
idden-layer ross-layer P
: ﬁgifm'mw) e shampoo ' P ASGO

;Vf-:f : // \ ‘ 7
- Output-layer ‘ /

[7
Hessian (H,,, Ao
5000 (Hyv)
6000
0.0001
7000
0 00

0 2000 4000 6000
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Implication IV: New algorithm ASGO

4.5
—— Shampoo
DASGO
4.0 —— Muon
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— Ak
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k 1
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Cos
}_
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Implication V: block-wise learning rate

The Sharpness Disparity Principle in Transformers
for Accelerating Language Model Pre-Training

Jinbo Wang*! Mingze Wang“! Zhanpeng Zhou “? Junchi Yan?> Weinan E!3% Lei Wu!3*

LLaMA (2B) on OpenWebText LLaMA (0.25B) on OpenWebText; wsd scheduler
- AdamW (50k) - AdamW (50Kk)
. ~ AdamW (100k) — AdamW (100k)
8 — Blockwise LR (50k) g 00 — Blockwise LR (50k)
1 ~ 295
526 5
= B 2.90
o 2
g o5 @© 2.85 1
2.80 0.042
) ) > - o -
g 2.31 xspeedup 075 ] , , ™ spleedup
"0 25k 50k 75k 100k 0 25k 50k 15K L00K

num of steps num of steps
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Mainly based on:

Zhang, Chen, Ding, Li, Sun, & Luo; Why Transformers Need Adam: A Hessian Perspective, NeurIPS 2024

Zhang, Chen, Li, Ding, Wu, Kingma, Ye, Luo & Sun; Adam-mini: Use Fewer Learning Rate To Gain More, ICLR 2025

Dong*, Zhang* (Alphabetically ordered), Luo, Yao, Sun; Towards Quantifying the Hessian Structure of Neural Networks, Preprint

Thanks to all the collaborators!

Jeff J. Yao D.P. Kingma Yinyu Ye Ruoyu Sun Zhi-Quan Luo
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How to Use Adam-mini? Just 1-line code change

amed_parameters = model.named_|

parameters(),
petas = (betatbeta), } Same values as AdamW!

e s ety } Your model config
)
We support: DDP, FSDP, Deepspeed, Torchtitan, HF trainer %

w Code for Adam-mini

] o Currently:
Code: https://github.com/zyushun/Adam-mini - 400+ stars
-- 2000+ download via pip install

(in the last two weeks)

Hessian and classical ideas are still powerful!
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Thanks for listening!
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